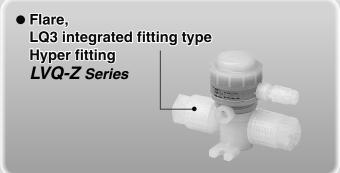
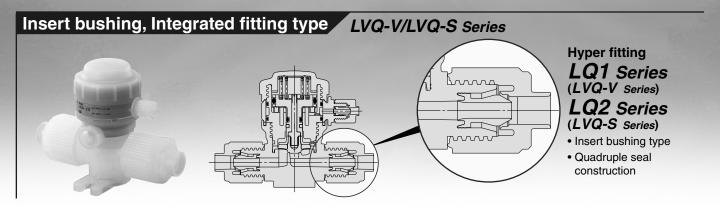
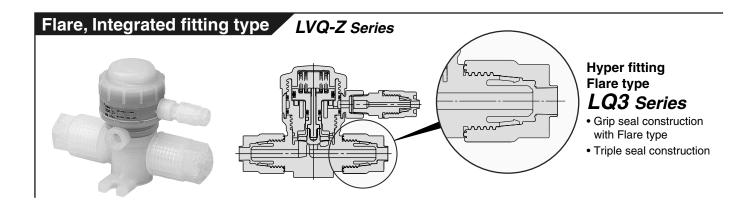
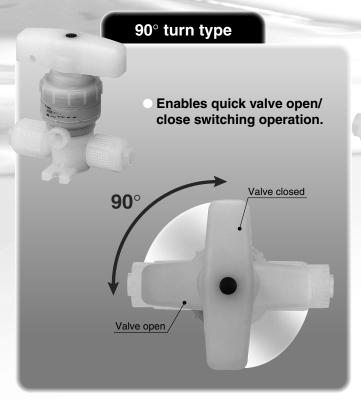

High Purity Chemical Liquid Valve Non-Metallic Exterior

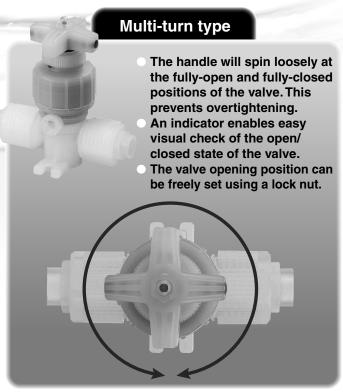

LVQ Series

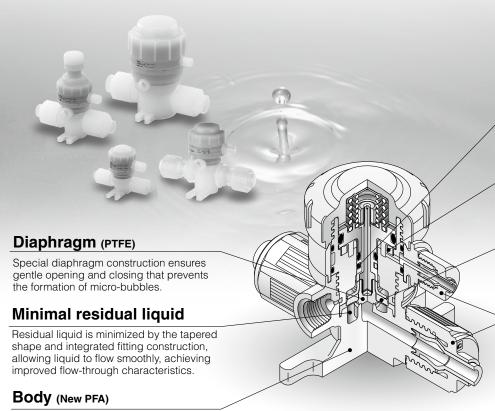
Additional Variations for the LVQ Series?






- Tube extension type
 LVQ-T Series
- High purity chemical liquid valves, High back pressure (0.5 MPa) tolerant Added the $LVQ \square \square H$ series.
- Additional options
 High temperature (Max. 170°C), Buffer material FFKM, Ammonium hydroxide compatible, High flow type


Insert bushing/Flare, integrated fitting types are available.



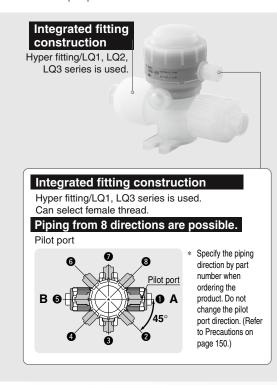
Added manual type.
Two types of handle operation methods can be selected.

Guide ring

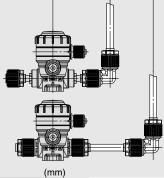
Eliminates lateral motion of the poppet which reduces internal leakage.

Piston damper

Absorbs piston momentum to minimize impact-induced particle generation.


Buffer

Protects diaphragm from deformation and damage due to back pressure.


Integrated fitting construction

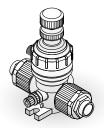
Offers quadruple seal construction. Nut lock mechanism—no additional tightening required. High flexural strength. Different tubing sizes can be selected.

Compatible with chemicals such as acids, bases and super pure water.

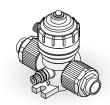

Space saving type Reduction in dimension

Model	A	Reduction in dimension
LVQ20	56.5	40.5 or more
LVQ30	70	49.5 or more
LVQ40	80	61.5 or more
LVQ50	104.5	64.5 or more
LVQ60	114.5	73.5 or more

Piping example


Options

With flow rate adjustment


With by-pass

With flow rate adjustment & by-pass

With indicator

With indicator & by-pass

Variations

Insert Bushing, Integrated Fitting Type LVQ/LVQH Series

Orifice diameter	Flow rate characteristics Kv (Cv)	Series
ø 4	0.3 (0.35)	LVQ(H)20
ø 8	1.1 (1.3)	LVQ(H)30
ø 10	1.6 (1.9)	LVQ(H)40
ø 16	4.2 (5)	LVQ(H)50
ø 22	6.8 (8)	LVQ(H)60

		Applicable tubing O.D.														
es		Metric size						Inch size								
	3	4	6	8	10	12	19	25	1/8	3/16	1/4	3/8	1/2	3/4	1	
H)20	-	•	-			+			•	•	-					
1)30			•	•	- \(-	+					•	-0-				
H)40					•	- \(-					+	•	- \(-			
H)50			-	-	+	•	<u>-</u> -	+	-		+	-	•	- \(-		
H)60					-	+	+	-	+	-	+	+	+	+	-	
										• W	ith red	lucer	0	Basic	size	

Insert Bushing, Integrated Fitting Type Space Saving/Space Saving Connection LVQS/LVQHS Series

LVQHS Series

	Orifice diameter	Flow rate characteristics	Series			F	ittin	ıg s	ize		
l	ulailletei	Kv (Cv)		2	2	3		4	5	(3
	ø 4	0.3 (0.35)	LVQ(H)S20	K	-	+		╁	+	\dashv	\vdash
	ø 8	1.1 (1.3)	LVQ(H)S30	Н	L	-		⊬	+	_	\vdash
	ø 10	1.6 (1.9)	LVQ(H)S40	\vdash	L	+		-	+		\vdash
	ø 16	4.2 (5)	LVQ(H)S50	\vdash	_	+		╁	-	_	\vdash
	ø 22	6.8 (8)	LVQ(H)S60	Н	H	+		╁	+	\dashv	-

Flare, Integrated Fitting Type LVQ-Z/LVQH-Z Series

LVQH-Z Series

0-16	Flow rate									App	olica	ble	tub	ing	O.D						
		Series					Ме	tric s	ize								In	ch si	ze		
uiaiiietei	Kv (Cv)		3	3	4	6	8	3 1	0	12	19	2	5	1/8	3/	16	1/4	3/8	1/2	3/4	1
ø 4	0.3 (0.35)	LVQ20(H)-Z	-	_	•	•			H	+	+			•	\dashv		•	+	+	+	+
ø 8	1.1 (1.3)	LVQ30(H)-Z	\mathbb{H}		+	+	\dashv		 -	+	+		H	+	\dashv		+	-	+	+	+
ø 10	1.6 (1.9)	LVQ40(H)-Z	Н		+	+	\dashv		├	-	+		H	+	\dashv		+	+	-	+	+
ø 16	4.2 (5)	LVQ50(H)-Z	Н		+	+	\dashv		⊬	+	-	_	H	+	\dashv		+	+	+	- ∳-	+
ø 22	6.8 (8)	LVQ60(H)-Z	Н		+	+	\dashv		┝	+	+	_	-	+	\dashv		+	+	+	+	•
	ø4 ø8 ø10 ø16	Orifice diameter characteristics Kv (Cv) Ø4 0.3 (0.35) Ø8 1.1 (1.3) Ø10 1.6 (1.9) Ø16 4.2 (5) 6.8 6.8	Orifice diameter characteristics Kv (Cv) Series Ø4 0.3 (0.35) LVQ20(H)-Z Ø8 1.1 (1.3) LVQ30(H)-Z Ø10 1.6 (1.9) LVQ40(H)-Z Ø16 4.2 (5) LVQ50(H)-Z 6.8 (5) LVQC0(H)-Z	Orifice diameter characteristics Kv (Cv) Series Ø4 0.3 (0.35) LVQ20(H)-Z Ø8 1.1 (1.3) LVQ30(H)-Z Ø10 1.6 (1.9) LVQ40(H)-Z Ø16 4.2 (5) LVQ50(H)-Z 6.8 (5) LVQ50(H)-Z	Orifice diameter characteristics Kv (Cv) Series Ø4 0.3 (0.35) LVQ20(H)-Z Ø8 1.1 (1.3) LVQ30(H)-Z Ø10 1.6 (1.9) LVQ40(H)-Z Ø16 4.2 (5) LVQ50(H)-Z	Orifice cliameter characteristics Kv (Cv) Series Ø4 0.3 (0.35) LVQ20(H)-Z Ø8 1.1 (1.3) LVQ30(H)-Z Ø10 1.6 (1.9) LVQ40(H)-Z Ø16 (5) LVQ50(H)-Z	Orifice diameter characteristics Kv (Cv) Series Ø4 0.3 (0.35) LVQ20(H)-Z Ø8 1.1 (1.3) LVQ30(H)-Z Ø10 1.6 (1.9) LVQ40(H)-Z Ø16 4.2 (5) LVQ50(H)-Z	Orifice diameter characteristics Kv (Cv) Series Me Ø4 0.3 (0.35) LVQ20(H)-Z Ø8 1.1 (1.3) LVQ30(H)-Z Ø10 1.6 (1.9) LVQ40(H)-Z Ø16 (5) (5) LVQ50(H)-Z	Orifice diameter characteristics Kv (Cv) Series Metric s Ø4 0.3 (0.35) LVQ20(H)-Z Ø8 1.1 (1.3) LVQ30(H)-Z Ø10 1.6 (1.9) LVQ40(H)-Z Ø16 4.2 (5) LVQ50(H)-Z	Orifice diameter characteristics Kv (Cv) Series Metric size Ø4 0.3 (0.35) LVQ20(H)-Z Ø8 1.1 (1.3) LVQ30(H)-Z Ø10 1.6 (1.9) LVQ40(H)-Z Ø16 (5) (5) LVQ50(H)-Z	Orifice diameter Characteristics Kv (Cv) Series Metric size 94 0.3 (0.35) LVQ20(H)-Z 98 1.1 (1.3) LVQ30(H)-Z 910 1.6 (1.9) LVQ40(H)-Z 916 4.2 (5) LVQ50(H)-Z 90 6.8 (5) LVQC0(H)-Z	Orifice diameter Characteristics Kv (Cv) Series Metric size 94 (0.35) (0.35) LVQ20(H)-Z 98 (1.3) (1.3) LVQ30(H)-Z 910 (1.6) (1.9) (1.9) LVQ40(H)-Z 916 (4.2) (5) (5) (5) (6.8) LVQ50(H)-Z	Orifice diameter Characteristics KV (CV) Series Metric size 94 0.3 (0.35) LVQ20(H)-Z 98 1.1 (1.3) LVQ30(H)-Z 910 1.6 (1.9) LVQ40(H)-Z 916 4.2 (5) LVQ50(H)-Z 90 6.8 (5) LVQ50(H)-Z	Orifice diameter Characteristics Kv (Cv) Series Metric size Ø4 0.3 (0.35) LVQ20(H)-Z Ø8 1.1 (1.3) LVQ30(H)-Z Ø10 1.6 (1.9) LVQ40(H)-Z Ø16 4.2 (5) LVQ50(H)-Z 6.8 (5) LVQ50(H)-Z	Orifice diameter Characteristics Kv (Cv) Series Metric size Ø4 (0.35) (0.35) LVQ20(H)-Z Ø8 (1.3) (1.3) LVQ30(H)-Z Ø10 (1.6) (1.9) (1.9) LVQ40(H)-Z Ø16 (4.2) (5) (5) (5) (5) (6.8 (5) (7.2) (7.2)	Orifice diameter Characteristics KV (CV) Series Metric size 94 0.3 (0.35) LVQ20(H)-Z 98 1.1 (1.3) LVQ30(H)-Z 910 1.6 (1.9) LVQ40(H)-Z 916 4.2 (5) LVQ50(H)-Z 90 6.8 (5) LVQ50(H)-Z	Orifice diameter Characteristics KV (CV) Series Metric size Ø4 0.3 (0.35) LVQ20(H)-Z Ø8 1.1 (1.3) LVQ30(H)-Z Ø10 1.6 (1.9) LVQ40(H)-Z Ø16 4.2 (5) LVQ50(H)-Z	Orifice diameter Characteristics Kv (Cv) Series Metric size In 94 (0.3) (0.35) LVQ20(H)-Z 3 4 6 8 10 12 19 25 1/8 3/16 1/4 98 (1.3) (1.3) LVQ30(H)-Z 4 1.6 (1.9) LVQ40(H)-Z 4.2 (5) LVQ50(H)-Z 4.2 (6) 4.2 (6) 4.2 (6) 4.2 (6) 4.2 (6) 4.2 (6) 4.2 (6) 4.2 (6) 4.2 (6) 4.2	Orifice diameter Characteristics Kv (Cv) Series Metric size Inch size Ø4 (0.3) (0.35) LVQ20(H)-Z 3 4 6 8 10 12 19 25 1/8 3/16 1/4 3/8 Ø8 1.1 (1.3) LVQ30(H)-Z 4 2 4 1.6 LVQ40(H)-Z 4 2 4.2 (1.9) LVQ50(H)-Z 4.2 (5)	Orifice diameter Characteristics Kv (Cv) Series Metric size Inch size 94 (0.3) (0.35) LVQ20(H)-Z 3 4 6 8 10 12 19 25 1/8 3/16 1/4 3/8 1/2 98 1.1 (1.3) LVQ30(H)-Z 4 1.6 (1.9) LVQ40(H)-Z 4 2 4.2 (5) LVQ50(H)-Z 4.2 (5) 4.2	Orifice diameter Characteristics KV (CV) Series Metric size Inch size 94 0.3 (0.35) LVQ20(H)-Z 3 4 6 8 10 12 19 25 1/8 3/16 1/4 3/8 1/2 3/4 98 1.1 (1.3) LVQ30(H)-Z 910 1.6 (1.9) LVQ40(H)-Z 916 4.2 (5) LVQ50(H)-Z 98 6.8 (5) LVQ50(H)-Z

Flare, Integrated Fitting Type

Space Saving/Space Saving Connection LVQS-Z/LVQHS-Z Series

LVOE	IS-7 Sories

LVQHS-Z Series

	Orifice diameter	Flow rate characteristics	Series			Fitt	ting s	ize	
	uiaiiletei	Kv (Cv)		2	!	3	4	5	6
	ø 4	0.3 (0.35)	LVQ20(H)S-Z	7		+	+	+	+
	ø 8	1.1 (1.3)	LVQ30(H)S-Z	\dashv		-	+	+	+
	ø 10	1.6 (1.9)	LVQ40(H)S-Z	\dashv		+	-	+	+
S	ø 16	4.2 (5)	LVQ50(H)S-Z	\dashv		+	+	-	+
	ø 22	6.8 (8)	LVQ60(H)S-Z	\dashv		+	+	+	-

Tube Extension Type LVQ-T/LVQH-T se

LVQH-T Series

ion Type LVQ-T/LVQH-T Series													
Orifice	Flow rate						_	Гubin	g siz				
		Series		M	etri	c si	ze			In	ich si	ze	
diameter	Kv (Cv)		6	10	1	2	19	25	1/4	3/8	1/2	3/4	1
ø 4	0.3 (0.35)	LVQ20(H)-T	•	\dashv			+	+	•	+	+	+	+
ø 8	1.1	LVQ30(H)-T	\vdash	- ∳		H	+	+	+	-	+	+	+
ø 10	1.6 (1.9)	LVQ40(H)-T	+	+	_	-	+	+	+	+	-	+	+
ø 16	4.2 (5)	LVQ50(H)-T	+	+		H	•	+	+	+	+	-	+
ø 22	6.8 (8)	LVQ60(H)-T	\vdash	+			+	-	+	+	+	+	-
	Orifice diameter Ø4 Ø8 Ø10 Ø16	Orifice diameter	Orifice diameter Flow rate characteristics Kv (Cv) Series Ø4 0.3 (0.35) LVQ20(H)-T Ø8 1.1 (1.3) LVQ30(H)-T Ø10 (1.9) (1.9) LVQ40(H)-T Ø16 (5) LVQ50(H)-T	Orifice diameter Flow rate characteristics Kv (Cv) Series Ø4 0.3 (0.35) LVQ20(H)-T Ø8 1.1 (1.3) LVQ30(H)-T Ø10 1.6 (1.9) LVQ40(H)-T Ø16 4.2 (5) LVQ50(H)-T	Orifice diameter Flow rate characteristics Kv (Cv) Series M Ø4 (0.35) (0.35) LVQ20(H)-T Ø8 (1.3) (1.3) LVQ30(H)-T Ø10 (1.9) (1.9) LVQ40(H)-T Ø16 (5) (5) (5) LVQ50(H)-T	Orifice diameter Flow rate characteristics Kv (Cv) Series Metric Ø4 0.3 (0.35) LVQ20(H)-T Ø8 1.1 (1.3) LVQ30(H)-T Ø10 (1.9) (1.9) LVQ40(H)-T Ø16 (5) LVQ50(H)-T	Orifice diameter Flow rate characteristics Kv (Cv) Series Metric si Ø4 0.3 (0.35) LVQ20(H)-T Ø8 1.1 (1.3) LVQ30(H)-T Ø10 (1.9) (1.9) LVQ40(H)-T Ø16 (5) LVQ50(H)-T	Orifice diameter Flow rate characteristics Kv (Cv) Series Metric size Ø4 0.3 (0.35) LVQ20(H)-T Ø8 1.1 (1.3) LVQ30(H)-T Ø10 1.6 (1.9) LVQ40(H)-T Ø16 4.2 (5) LVQ50(H)-T	Orifice diameter Flow rate characteristics Kv (Cv) Series Metric size Ø4 0.35 (0.35) LVQ20(H)-T Ø8 1.1 (1.3) LVQ30(H)-T Ø10 1.6 (1.9) LVQ40(H)-T Ø16 4.2 (5) LVQ50(H)-T	Orifice diameter Flow rate characteristics Kv (Cv) Series Metric size Metric size	Orifice diameter Flow rate characteristics Kv (Cv) Series Metric size In Ø4 (0.35) (0.35) LVQ20(H)-T Ø8 (1.3) (1.3) LVQ30(H)-T Ø10 (1.9) (1.9) LVQ40(H)-T Ø16 (5) (5) LVQ50(H)-T	Orifice diameter Flow rate characteristics Kv (Cv) Series Metric size Inch si Ø4 0.3 (0.35) LVQ20(H)-T Ø8 1.1 (1.3) LVQ30(H)-T Ø10 1.6 (1.9) LVQ40(H)-T Ø16 (5) LVQ50(H)-T	Orifice diameter Flow rate characteristics Kv (Cv) Series Metric size Inch size 6 10 12 19 25 1/4 3/8 1/2 3/4 Ø4 (0.35) (0.35) LVQ20(H)-T 4.1.1 (1.3) LVQ30(H)-T 4.2 (1.9) LVQ40(H)-T 4.2 (1.9) LVQ50(H)-T 4.2 (5) 4.2

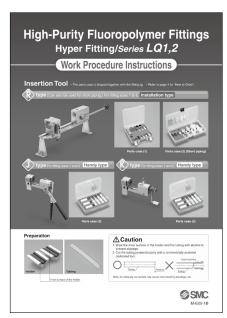
65

SMC

Guide to Pamphlet on Fluoropolymer Fitting Installation Methods

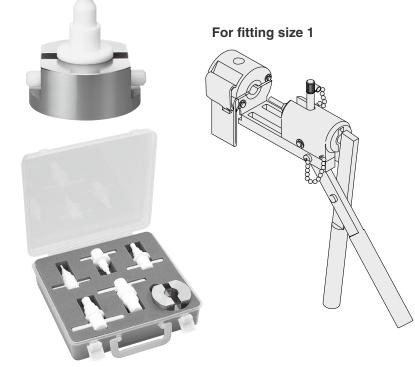
* The pamphlets can be downloaded from the SMC home page. https://www.smcworld.com

LQ1/2 Series Installation Method


J typeFor fitting sizes 1 and 2

K type

For fitting sizes 1 and 2



M-E05-1

For fitting sizes 2 to 6

M-E06-4

I-N-D-E-X

e e	Air Operated Insert Bushing, Integrated Fitting Type Hyper Fitting LVQ Series	LQ1 LQ1, LQ2 P.69
d Fitting Typ	Air Operated Insert Bushing, Integrated Fitting Type Space Saving/Space Saving Connection LVQS Series	LQ1 LQ1 P.79
ng, Integrate	Manually Operated Insert Bushing, Integrated Fitting Type Hyper Fitting LVQH Series	LQ1, LQ2 P.90
Insert Bushing, Integrated Fitting Type	Manually Operated Insert Bushing, Integrated Fitting Type Space Saving/Space Saving Connection LVQHS Series	LQ1 P.94
	Fittings and Special Tools	P.99
0	Air Operated Flare, Integrated Fitting Type Hyper Fitting LVQ-Z Series	LQ3 P.101
Fitting Type	Air Operated Flare, Integrated Fitting Type Space Saving/Space Saving Connection LVQS-Z Series	LQ3
Flare, Integrated Fitti	Manually Operated Flare, Integrated Fitting Type Hyper Fitting LVQH-Z Series	LQ3 P.121
Fla	Manually Operated Flare, Integrated Fitting Type Space Saving/Space Saving Connection • LVQHS-Z Series	LQ3 P.125

I-N-D-E-X

LQ1 **Tube Extension Type** Air Operated **Tube Extension Type** ■ LVQ-T Series **Manually Operated Tube Extension Type** • LVQH-T Series ... P.139 Air Operated, 0.5 MPa Back Pressure Tolerant LQ1 **Insert Bushing, Integrated Fitting Type Hyper Fitting** LQ1, LQ2 ■ LVQ □ □ H Series Air Operated, 0.5 MPa Back Pressure Tolerant Flare, Integrated Fitting Type LQ3 **Hyper Fitting** LVQ□□H-Z Series P.145

P.148

Applicable Fluids

Precautions


Air Operated Insert Bushing, Integrated Fitting Type Hyper Fitting

LVQ Series

The LQ2 fitting for the insert bushing, integrated fitting type LVQ/LVQH series high-purity chemical liquid valve is to be discontinued as of September 2025. Select the LQ1 fitting instead.

How to Order

Body class

Symbol	Body class	Orifice dia.
2	2	ø4
3	3	ø8
4	4	ø10
5	5	ø16
6	6	ø22

2 Valve type

0	N.C.					
1	N.O.					
2	Double acting					

Note) For valve type combinations, refer to variations on the next page.

3 Fitting type

Symbol	Fitting type	Body class
٧	LQ1	2, 3, 4, 5, 6
S	LQ2	2, 3, 4, 5

Note) Insert bushing is used in common.

4 Applicable tubing size Note)

Symbol	Connection tubing	Body class								
Syllibol	size	2	3	4	5	6				
Metric	size									
03	3 x 2	•								
04	4 x 3	•								
06	6 x 4	0	•							
08	8 x 6		•							
10	10 x 8		0	•						
12	12 x 10			0	•					
19	19 x 16				0	•				
25	25 x 22					0				
Inch s	size									
03	1/8" x 0.086"	•								
05	3/16" x 1/8"	•								
07	1/4" x 5/32"	0	•							
11	3/8" x 1/4"		0	•						
13	1/2" x 3/8"			0	•					
19	3/4" x 5/8"				0	•				
25	1" x 7/8"					0				

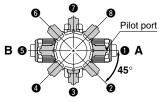
○Basic size ●With reducer

Note) Refer to page 150 for details of the applicable tubing sizes.

5 Port B (OUT) different dia. size

Symbol	Application
Nil	Ports A & B same size
Refer to the applicable tubing size table to the left.	Different diameter tubings can be selected within the same body class.

6 Pilot port type


Nil	LQ1 integrated fitting	Connection tubing size 1/8" x 0.086"(3 x 2) Note)
М	LQ1 integrated fitting	Connection tubing size 4 x 3 Note)
R	Threaded	Rc1/8
N	Threaded	NPT1/8

Note) Refer to page 150 for details of the applicable tubing sizes.

Pilot port direction

Symbol	Direction
Nil	•
P2	2
P3	3
P4	4
P5	6
P6	6
P7	0
P8	8

Pilot port piping direction

 Specify the piping direction by part number when ordering the product. Do not change the pilot port direction. (Refer to Precautions on page 150.)

Air Operated Insert Bushing, Integrated Fitting Type LVQ Series

8 Option 1

Nil	None						
1	With flow rate adjustment						
2	With by-pass						
3	With flow rate adjustment & by-pass						
4	With indicator						
5	High back pressure (0.42 MPa)						
6	High back pressure with flow rate adjustment						
7	High back pressure with by-pass						
8	High back pressure with flow rate adjustment & by-pass						
9	High back pressure with indicator						
24	With indicator & by-pass						

Note) Refer to variations in the table below for valve type and option 1 combinations. Options in the same table can not be combined each other.

9 Option 2

Cumbal				Ap	plica	ble (optio	Buffer material	Note				
Symbol	Nil	1	2	3	4	5	6	7	8	9	24	Duller material	Note
Nil	0	0	0	0	0	0	0	0	0	0	0	FKM	_
J	0	0	_	_	_	_	_	_	_	_	_	FKM	For high temperature
K	0	0	0	0	0	0	0	0	0	0	0	FFKM	_
N	0	0	0	0	0	0	0	0	0	0	0	EPDM	For ammonium hydroxide
Р	0	_	_	_	0	0	_	_	_	_	_	FKM	High flow type LVQ6 □ only

Note 1) Options 2 in the same table cannot be combined each other.

Note 2) Only option 1 (with flow rate adjustment) is available for use in high-temperature environments. However, it cannot be used in combination with any of the high back pressure specifications.

Variations

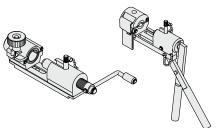
Variations		Model	LVQ20	LVQ30	LVQ40	LVQ50	LVQ60
	Orit	ø4	ø8	ø10	ø16	ø22	
	Tubing O.D.	Metric	6	10	12	19	25
Туре	Symbol Valve type	Inch	1/4	3/8	1/2	3/4	1
Basic	†PA †PB †PA	N.C.	0	0	0	0	0
N.C. N.O. Double	B A B A B A A A A A A A A A A A A A A A	N.O.	0	0	0	0	0
acting		Double acting	0	0	0	0	0
With flow rate adjustment	[†] PA B → A ⊗ N.C.	N.C.	0	0	0	0	0
With by-pass Double acting	ÿPA ÿPA B⊟A B⊟A	N.C.	0	0	0	0	0
N.C.	₹ APB N.C. Double acting	Double acting	0	0	0	0	0
With flow rate adjustment & by-pass	∲PA B A S N.C.	N.C.	0	0	0	0	0
With indicator	ÿ PA B A ⊗ N.C.	N.C.	0	0	0	0	0
High back pressure	ÿ PA B A	N.C.	0	0	0	0	0
With indicator & by-pass	ÿ PA B A S N.C.	N.C.	0	0	0	0	0

LVQ Series

Symbol

ind	asic/Wi icator/F k press	High	With flow rate adjustment	With ir	y-pass/ ndicator -pass	With flow rate adjustment & by-pass
PA B A N.C.	PB B HA M N.O.	PA B A A PB Double acting	†PA #A N.C.	PA B A N.C.	PA B A A PB Double acting	∳PA B ∦A N.C.

A Specific Product Precautions


Be sure to read this before handling the products. Refer to page 501 for Safety Instructions and pages 149 and 150 for Air Operated Chemical Liquid Valve Precautions.

Piping

⚠ Caution

1. Connect tubing by special tools.

For information on tubing connection and special tools, please see the pamphlet "High Purity Fluoropolymer Fittings Hyper Fitting LQ1/2 Series Work Procedure Instructions" (M-E05-1). (The pamphlet can be downloaded from the SMC home page.)

 Tighten the nut until it touches the end surface of the body, and then tighten it an additional 1/8 turn. If the nut won't turn any further, then it means a sufficient tightening has occurred. Refer to the proper tightening torques shown below.

Tightening Torque for Piping

Body class	Torque (N⋅m)						
Bouy class	LQ1	LQ2					
2	0.3 to 0.4	1.5 to 2.0					
3	0.8 to 1.0	3.0 to 3.5					
4	1.0 to 1.2	7.5 to 9.0					
5	2.5 to 3.0	11.0 to 13.0					
6	5.5 to 6.0	_					

Standard Specifications

Mod	del	LVQ20	LVQ30	LVQ40	LVQ50	LVQ60			
Tubin a O D Note 1)	Metric	6	10	12	19	25			
Tubing O.D.Note 1)	Inch	1/4	3/8	1/2	3/4	1			
Fitting type	IN/OUT port		LQ1 c	r LQ2		LQ1			
Fitting type	Pilot port		LQ1						
Orifice diamet	er	ø4	ø8	ø10	ø16	ø22			
Flow rate	Kv	0.3	1.1	1.6	4.2	6.8 (8.1) Note 2)			
characteristics	Cv	0.35	1.3	1.9	5	8 (9.5) Note 2)			
Withstand pre	ssure (MPa)			1					
Operating pressure	Standard	-98 kPa to 0.5 MPa Note 3) -98 kPa to 0.4 MPa Note 3							
<a→b flow=""></a→b>	High temperature	–98 kPa to 0.3 MPa Note 3)							
Book myssours	Standard		r less						
Back pressure (MPa)	High back pressure								
(4)	High temperature		0.3 or less	0.2 or less					
Valve leakage	(cm³/min)	0 (With water pressure)							
Pilot air press	ure (MPa)	0.3 to 0.5 (High back pressure: 0.45 to 0.55)							
Pilot port size		1/8" (ø3), ø4, Rc 1/8, NPT 1/8							
Fluid	Standard	0 to 100							
temperature (°C)	High temperature	ture 0 to 170							
Ambient temp	erature (°C)	0 to 60							
Weight (kg)		0.08	0.17	0.22	0.70	0.81			

Note 1) Refer to page 150 for details of the applicable tubing sizes.

Note 2) (): High flow type

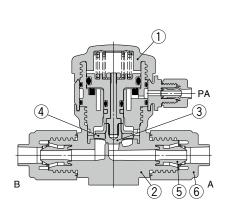
Note 3) This product cannot be used for vacuum retention. Also, connecting the vacuum to the B port may reduce the life of the product.

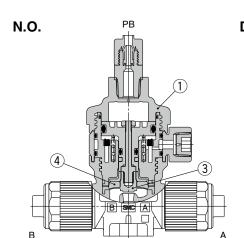
Applicable Different Diameter Tubings with Reducer

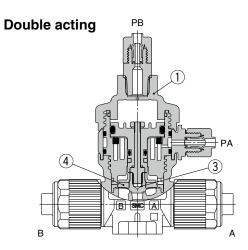
Different diameter tubings can be selected (within the same body class) by using a nut and an insert bushing (reducer).

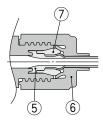
• With reducer

Dl		Connection tubing O.D.													
Body				Metri	c size						lr	nch siz	ze		
Class	3	4	6	8	10	12	19	25	1/8	3/16	1/4	3/8	1/2	3/4	1
2	•	•	0	_	_	_	_	_	•	•	0	_	_	_	_
3	_	_	•	•	0	_	_	_	• 0 - -						_
4	-	_	_	_	•	0	_	_	_	_	_	•	0	_	_
5	-								_	_	_	_	•	0	_
6	_	_	_	_	_	_	•	0	_	_	_	_	_	•	0

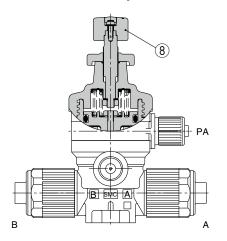

Note) Refer to page 99 for information on changing tubing sizes.

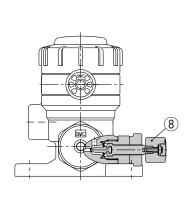



LVQ Series

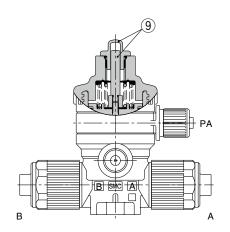

Construction

Basic N.C.



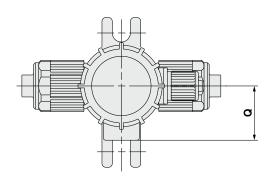


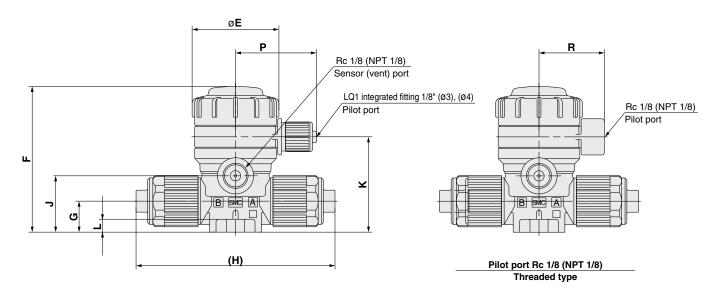
With reducer

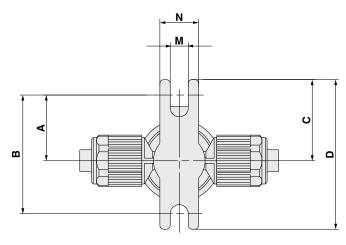

With flow rate adjustment

With by-pass

With indicator


Component Parts


No.	Description	Material
1	Actuator	PVDF
2	Body	PFA
3	Diaphragm	PTFE
		FKM
4	Buffer	EPDM
		FFKM
5	Insert bushing	PFA
6	Nut	PFA
7	Collar	PFA
8	Flow rate adjuster	PVDF
9	Indicator/Cover	PP


Dimensions

Basic, High back pressure

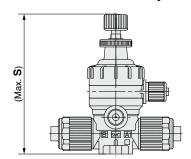
N.C. valve

* Drawings show the LVQ \square 0-S.

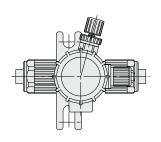
	LVQ□0-°□	Dime	nsion	s (N.C	. Val	ve)												(mm)
	Model	Α	В	С	D	Е	F	G	ŀ		J	к		м	N	Р	Q	R
	Wodel	_ ^	٥			_	•		۷□	S□		1.		141	.,	•	•	••
	LVQ20- ^v _s □	25.5	46	31.5	58	33.6	56.5	12	70	77	21.8	37	5	7	15	31.3	21	25.3
	LVQ30-s □	28.5	57	34.5	69	45.4	77	16.5	83	95	32	50	6	7	20	37.2	25	31.2
	LVQ40- ^v _s □	28.5	57	34.5	69	45.4	82.5	22	95	109	37.5	55.5	6	7	20	37.2	25	31.2
Ī	LVQ50-s □	42	84	48	96	75	127	25	130	141	50.2	78.2	10	7	20	50.8	38.5	45
•	LVQ60-V□*	42	84	48	96	75	136.8	32	150	_	60	88	10	7	20	50.8	38.5	45

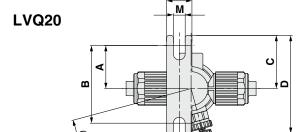
^{*} The LVQ60 is available only with "V".

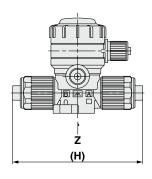
LVQ Series

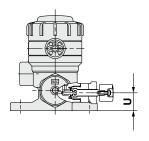

Dimensions

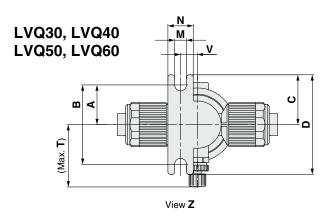
With flow rate adjustment, High back pressure with flow rate adjustment

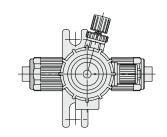

N.C. valve

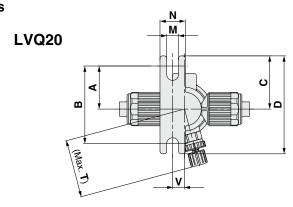

Dimensions	(mm)
Model	S
LVQ20- ^v _s □-1	83
LVQ30- [∨] s □-1	113.5
LVQ40- [∨] _s □-1	119
LVQ50- ^v _s □-1	171.5
LVQ60-V□-1*	182.5

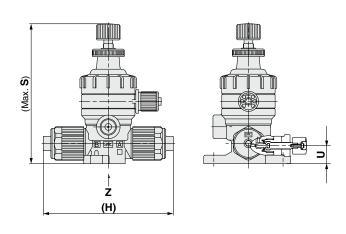

^{*} The LVQ60 is available only with "V".

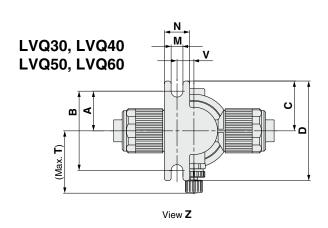



With by-pass, High back pressure with by-pass N.C. valve


* Drawings show the LVQ \square 0-S.


Dimensions											(mm)
Model	Α	В	С	D	М	N	т	U	v	ŀ	1
Wodel	_ ^			"	IVI	"	•	"	V	V□	S□
LVQ20- [∨] s □-2	25.5	46	31.5	58	7	15	34.3	10.6	7	64	77
LVQ30- [∨] s □-2	25.5	51	31.5	63	7	15	36.9	16.5	10	83	95
LVQ40- [∨] s □-2	25.5	51	31.5	63	7	15	37.9	22	10	95	109
LVQ50- [∨] s □-2	38	76	44	88	7	20	64	25	17	130	141
LVQ60-V□-2*	38	76	44	88	7	20	66	32	17	150	_

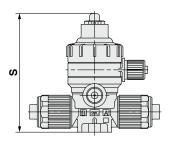

^{*} The LVQ60 is available only with "V".



With flow rate adjustment & by-pass, High back pressure with flow rate adjustment & by-pass N.C. valve

* Drawings show the LVQ□0-S.

Dimensions

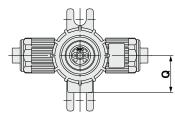

Dillicitatoria												(111111)
Model	Λ	В	С	D	М	N	s	т		v	Н	
Model	Α	•			IVI	l IN	3	•	U	v	٧□	S□
LVQ20- [∨] _s □-3	25.5	46	31.5	58	7	15	83	34.3	10.6	7	64	77
LVQ30- [∨] _s □-3	25.5	51	31.5	63	7	15	113.5	36.9	16.5	10	83	95
LVQ40- ^v _s □-3	25.5	51	31.5	63	7	15	119	37.9	22	10	95	109
LVQ50- [∨] _s □-3	38	76	44	88	7	20	171.5	64	25	17	130	141
LVQ60-V□-3*	38	76	44	88	7	20	182.5	66	32	17	150	_

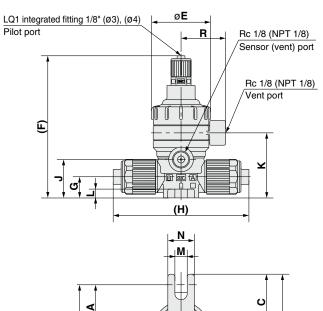
^{*} The LVQ60 is available only with "V".

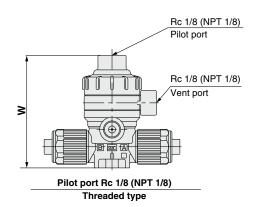
With indicator, High back pressure with indicator N.C. valve

Dimensions	(mm)			
Model	S			
LVQ20- ^v _s □-4	70.5			
LVQ30- ^v _s □-4	88.5			
LVQ40- [∨] s □-4	94			
LVQ50- ^v _s □-4	134.5			
LVQ60-V□-4*	144			

^{*} The LVQ60 is available only with "V".

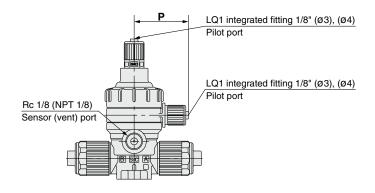


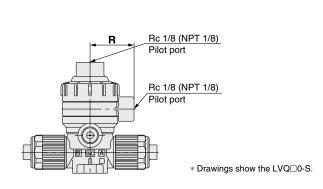

LVQ Series


Dimensions

Basic

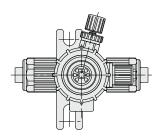
N.O. valve

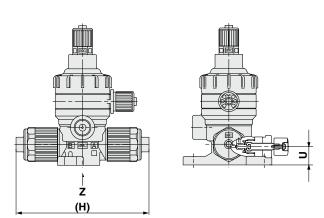


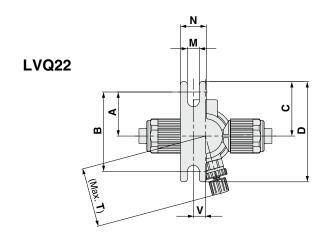


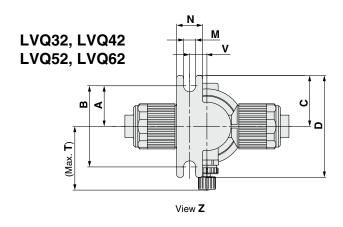
* Drawings show the LVQ \square 0-S.

Double acting valve




LVQ 1-5	Dimer	nsion	s (N.C). Val	ve, Do	ouble A	cting	Valv	e)									(mm)
Model	A	В	С	D	Е	_	G	I	1	J	К	1	м	N	Р	Q	R	w
WIOGCI	_ ^			٥	_	•		V □	S□		- 1		141	'	•	•	••	•
LVQ21-5 [25.5	46	31.5	58	33.6	81	12	70	77	21.8	37	5	7	15	31.3	21	25.3	64
LVQ31-VS	28.5	57	34.5	69	45.4	99	16.5	83	95	32	50	6	7	20	37.2	25	31.2	82
LVQ41-VS	28.5	57	34.5	69	45.4	104.5	22	95	109	37.5	55.5	6	7	20	37.2	25	31.2	87.5
LVQ5 ₂ -vS	42	84	48	96	75	145	25	130	141	50.2	78.2	10	7	20	50.8	38.5	45	128
LVQ6¹-V□*	42	84	48	96	75	154.5	32	150	_	60	88	10	7	20	50.8	38.5	45	137.5


^{*} The LVQ60 is available only with "V".

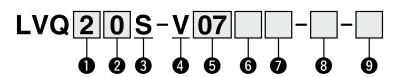


With by-pass Double acting valve

* Drawings show the LVQ□0-S.

Dimensions (Double Acting Valve)

Dimensions (DC	imensions (Double Acting valve)											
Model	Α	В	С	D	М	N	т	U	V	ŀ	1	
iviodei	_ A	-			IVI	IN		U	V	٧□	S□	
LVQ22- [∨] s □-2	25.5	46	31.5	58	7	15	34.3	10.6	7	64	77	
LVQ32- [∨] s □-2	25.5	51	31.5	63	7	15	36.9	16.5	10	83	95	
LVQ42- [∨] _s □-2	25.5	51	31.5	63	7	15	37.9	22	10	95	109	
LVQ52- [∨] s □-2	38	76	44	88	7	20	64	25	17	130	141	
LVQ62-V□-2*	38	76	44	88	7	20	66	32	17	150	_	


^{*} The LVQ60 is available only with "V".

Air Operated Insert Bushing, Integrated Fitting Type Space Saving/Space Saving Connection

LVQS Series

How to Order

1 Body class

Symbol	Body class	Orifice dia.
2	2	ø4
3	3	ø8
4	4	ø10
5	5	ø16
6	6	ø22

2 Valve type

0	N.C.
1	N.O.
2	Double acting

Note) For valve type combinations, refer to variations on the next page.

3 Body type

_	, ,,
S	Space saving connection

4 Fitting type

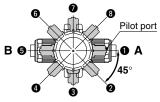
Symbol	Fitting type	Body class
V	LQ1	2, 3, 4, 5, 6

5 Applicable fitting size

Symbol	Eitting cizo	Body class								
Symbol	Fitting size	2	3	4	5	6				
07	2	0								
11	3		0							
13	4			0						
19	5				0					
25	6					0				

Note) Refer to page 81 for How to Order fitting parts. Select a tube with the same size as the valve side fitting.

6 Pilot port type


Nil	LQ1 integrated fitting	Connection tubing size 1/8" x 0.086" (3 x 2) Note)
М	LQ1 integrated fitting	Connection tubing size 4 x 3 Note)
R	Threaded	Rc1/8
N	Threaded	NPT1/8

Note) Refer to page 150 for details of the applicable tubing sizes.

Pilot port direction

Symbol	Direction
Nil	0
P2	0
P3	8
P4	4
P5	6
P6	6
P7	0
P8	8

Pilot port piping direction

 Specify the piping direction by part number when ordering the product. Do not change the pilot port direction. (Refer to Precautions on page 150.)

Air Operated Insert Bushing, Integrated Fitting Type LVQS Series

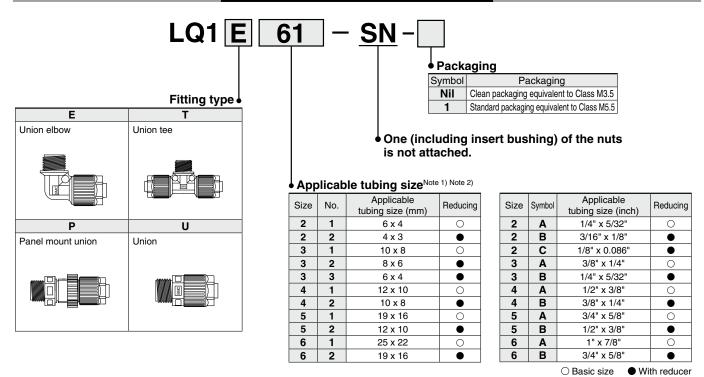
8 Option 1

Nil	None
1	With flow rate adjustment
2	With by-pass
3	With flow rate adjustment & by-pass
4	With indicator
5	High back pressure (0.42 MPa)
6	High back pressure with flow rate adjustment
7	High back pressure with by-pass
8	High back pressure with flow rate adjustment & by-pass
9	High back pressure with indicator
24	With indicator & by-pass

Note) Refer to variations in the table below for valve type and option 1 combinations. Options in the same table can not be combined each other.

9 Option 2

Cumbal				Аp	plica	ble	optio	Buffer material	Note				
Symbol	Nil	1	2	3	4	5	6	7	8	9	24	buller material	Note
Nil	0	0	0	0	0	0	0	0	0	0	0	FKM	_
J	0	0	_	_	_	_	_	_	_	_	_	FKM	For high temperature
K	0	0	0	0	0	0	0	0	0	0	0	FFKM	_
N	0	0	0	0	0	0	0	0	0	0	0	EPDM	For ammonium hydroxide
Р	0	_	_	_	0	0	_	_	_	_	_	FKM	High flow type LVQ6 □ only


Note 1) Options 2 in the same table cannot be combined each other.

Note 2) Only option 1 (with flow rate adjustment) is available for use in high-temperature environments. However, it cannot be used in combination with any of the high back pressure specifications.

Variations

		Model	LVQ20	LVQ30	LVQ40	LVQ50	LVQ60
	Orit Applicate	ice diameter	ø4	ø8	ø10	ø16	ø22
Туре	Symbol Valve ty	le fitting size	2	3	4	5	6
Basic N.C.	†PA †PB †PA	N.C.	0	0	0	0	0
N.O. Double	B A B A B A A A A A A A A A A A A A A A	N.O.	0	0	0	0	0
acting acting	N.C. N.O. Double acting	Double acting	0	0	0	0	0
With flow rate adjustment	∳PA B H A ⊗ N.C.	N.C.	0	0	0	0	0
With by-pass Double acting	∳PA ∳PA B A B A	N.C.	0	0	0	0	0
N.C.	₹ APB N.C. Double acting	Double acting	0	0	0	0	0
With flow rate adjustment & by-pass	∳PA B A S N.C.	N.C.	0	0	0	0	0
With indicator	ÿPA B A ⊗ N.C.	N.C.	0	0	0	0	0
High back pressure	∳PA B A	N.C.	0	0	0	0	0
With indicator & by-pass	∜PA B A N.C.	N.C.	0	0	0	0	0

How to Order Space Saving Fittings

Note 1) Select the same size as the fitting on the valve.

Note 2) Refer to page 150 for details of the applicable tubing sizes.

Piping Example

LVQS Series

Symbol

With by-pass/
With indicator & by-pass

†PA

**PA

**PA

**PB

N.C. Double acting

With flow rate adjustment

v PA

B

N.C.

With flow rate adjustment & by-pass PA

B
A

Ñ.C.

Standard Specifications

Mod	el	LVQ20S	LVQ30S	LVQ40S	LVQ50S	LVQ60S	
Connection fit	ting size	2	3	4	5	6	
Fitting type	Infitting size 2 3 3 3 3 3 3 3 3 3	LQ1					
Fitting type	Pilot port			LQ1			
Orifice diamete	er	ø4	ø8	ø10	ø16	ø22	
Flow rate	Kv	0.3	1.1	1.6	4.2	6.8 (8.1) Note 1)	
characteristics	Cv	0.35	1.3	1.9	5	8 (9.5) Note 1)	
Withstand pres	ssure (MPa)			1			
Operating pressure	Standard	–98 kP	a to 0.5 MP	a Note 3)	-98 kPa to 0.4 MPa Note 3)		
<a→b flow=""></a→b>	High temperature		–98 kF	a to 0.3 MP	a Note 3)		
	Standard		0.3 or less	0.2 o	r less		
Back pressure (MPa)	High back pressure			0.42 or less			
(2)	High temperature		0.3 or less		0.2 o	r less	
Valve leakage	(cm³/min)		0 (Wit	th water pre	ssure)		
Pilot air press	ure (MPa)	0.3	to 0.5 (High	back pressu	re: 0.45 to 0).55)	
Pilot port size	Note 2)		1/8" (ø3)	, ø4, Rc 1/8,	NPT 1/8		
Fluid	Standard			0 to 100			
temperature (°C)	High temperature			0 to 170			
Ambient temp	erature (°C)			0 to 60			
Weight (kg)		0.085	0.175	0.223	0.725	0.835	

Note 1) (): High flow type

Note 2) Refer to page 150 for details of the applicable tubing sizes.

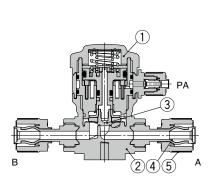
Note 3) This product cannot be used for vacuum retention. Also, connecting the vacuum to the B port may reduce the life of the product.

▲ Specific Product Precautions

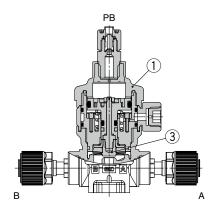
Be sure to read this before handling the products. Refer to page 501 for Safety Instructions and pages 149 and 150 for Air Operated Chemical Liquid Valve Precautions.

Piping

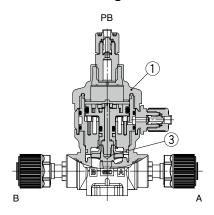
⚠ Caution

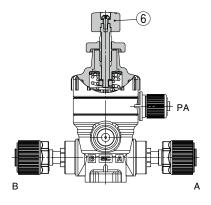

- 1. Take extra care with the insert bushing when connecting the fittings.
- Tighten the nut until it touches the end surface of the body, and then tighten it an additional 1/8 turn. If the nut won't turn any further, then it means a sufficient tightening has occurred. Refer to the proper tightening torques shown below.

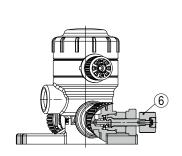
Tightening Torque for Piping

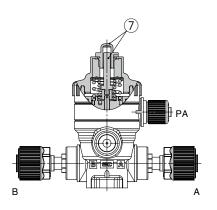

Dody along	Torque (N⋅m)
Body class	LQ1
2	0.3 to 0.4
3	0.8 to 1.0
4	1.0 to 1.2
5	2.5 to 3.0
6	5.5 to 6.0

Construction


Basic N.C.


Basic N.O.

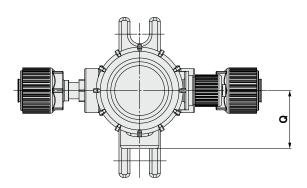

Basic Double acting

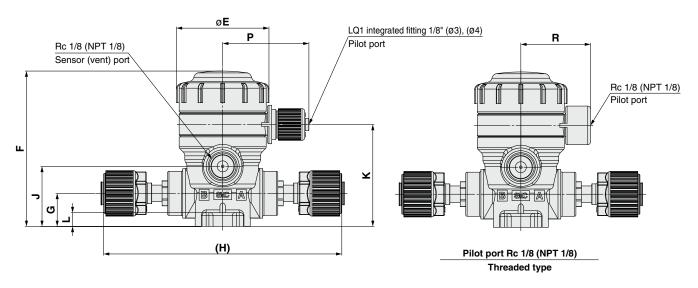

With flow rate adjustment

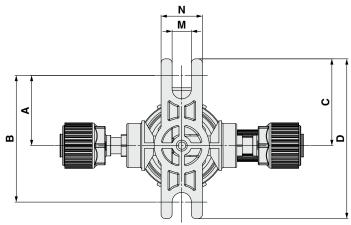
With by-pass

With indicator

Component Parts

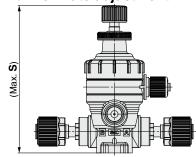

001111	Joneth Farts	
No.	Description	Material
1	Actuator	PVDF
2	Body	PFA
3	Diaphragm	PTFE
4	Insert bushing	PFA
5	Nut	PFA
6	Flow rate adjuster	PVDF
7	Indicator/Cover	PP


LVQS Series


Dimensions

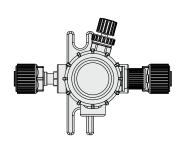
Basic, High back pressure

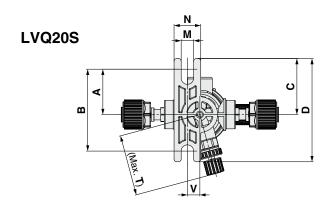
N.C. valve

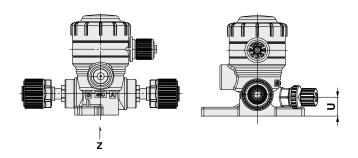

* Drawings show the LVQ \square 0-S.

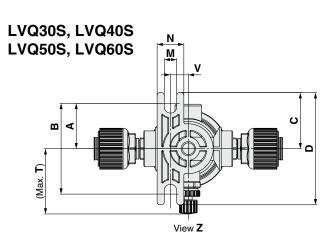
LVQ_0S-V_	Dimer	nsion	s (N.C	. val	ve)											(mm)
Model	Α	В	С	D	Е	F	G	Н	J	K	L	M	N	Р	Q	R
LVQ20S-V07	25.5	46	31.5	58	33.6	56.5	12	89	21.8	37	5	7	15	31.3	21	25.3
LVQ30S-V11	28.5	57	34.5	69	45.4	77	16.5	106	32	50	6	7	20	37.2	25	31.2
LVQ40S-V13	28.5	57	34.5	69	45.4	82.5	22	120	37.5	55.5	6	7	20	37.2	25	31.2
LVQ50S-V19	42	84	48	96	75	127	25	164	50.2	78.2	10	7	20	50.8	38.5	45
LVQ60S-V25	42	84	48	96	75	136.8	32	177	60	88	10	7	20	50.8	38.5	45

With flow rate adjustment, High back pressure with flow rate adjustment


N.C. valve


Dimensions	(mm)				
Model	S				
LVQ20S-V07-1	83				
LVQ30S-V11-1	113.5				
LVQ40S-V13-1	119				
LVQ50S-V19-1	171.5				
I VQ60S-V25-1	182.5				

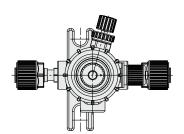


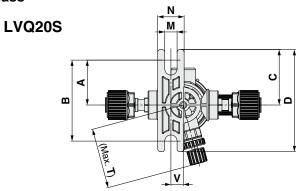

* Drawing shows the LVQ□0-S.

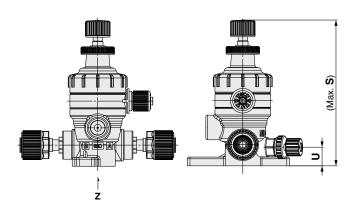
With by-pass, High back pressure with by-pass N.C. valve

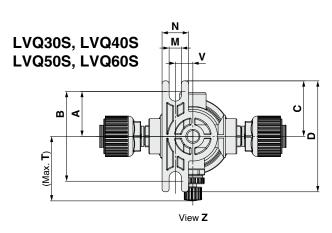
Dimensions									(mm)
Model	Α	В	С	D	M	N	Т	U	٧
LVQ20S-V07-2	25.5	46	31.5	58	7	15	34.3	10.6	7
LVQ30S-V11-2	25.5	51	31.5	63	7	15	36.9	16.5	10
LVQ40S-V13-2	25.5	51	31.5	63	7	15	37.9	22	10
LVQ50S-V19-2	38	76	44	88	7	20	64	25	17
LVQ60S-V25-2	38	76	44	88	7	20	66	32	17

* Drawings show the LVQ□0-S.

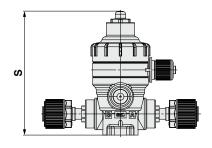

LVQS Series


Dimensions


With flow rate adjustment & by-pass,

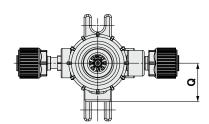

High back pressure with flow rate adjustment & by-pass

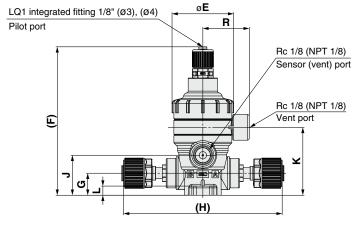
N.C. valve

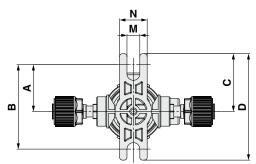

* Drawings show the LVQ□0-S.

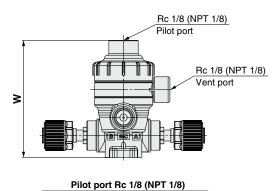
Dimensions										(mm)
Model	Α	В	С	D	M	N	S	Т	U	٧
LVQ20S-V07-3	25.5	46	31.5	58	7	15	83	34.3	10.6	7
LVQ30S-V11-3	25.5	51	31.5	63	7	15	113.5	36.9	16.5	10
LVQ40S-V13-3	25.5	51	31.5	63	7	15	119	37.9	22	10
LVQ50S-V19-3	38	76	44	88	7	20	171.5	64	25	17
LVQ60S-V25-3	38	76	44	88	7	20	182.5	66	32	17

With indicator, High back pressure with indicator

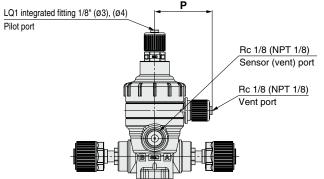

N.C. valve

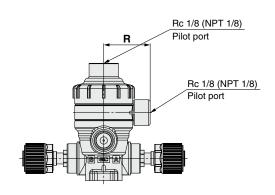

Dimensions	(mm)		
Model	S		
LVQ20S-V07-4	70.5		
LVQ30S-V11-4	88.5		
LVQ40S-V13-4	94		
LVQ50S-V19-4	134.5		
LVQ60S-V25-4	144		




* Drawing shows the LVQ \square 0-S.

Basic N.O. valve



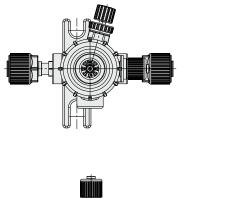


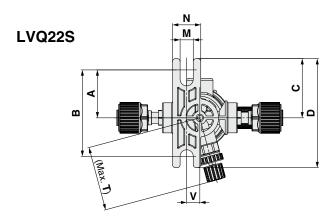
Threaded type

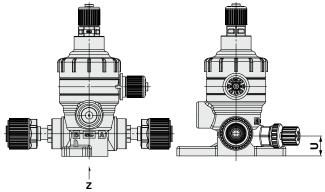
* Drawings show the LVQ□0-S.

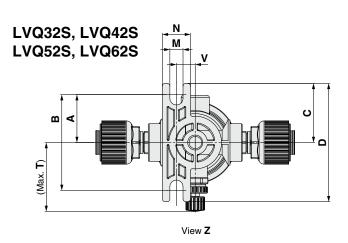
Double acting valve

* Drawings show the LVQ□0-S.


LVQ□¹₂S-V□ Dimensions (N.O. Valve, Double Acting Valve)

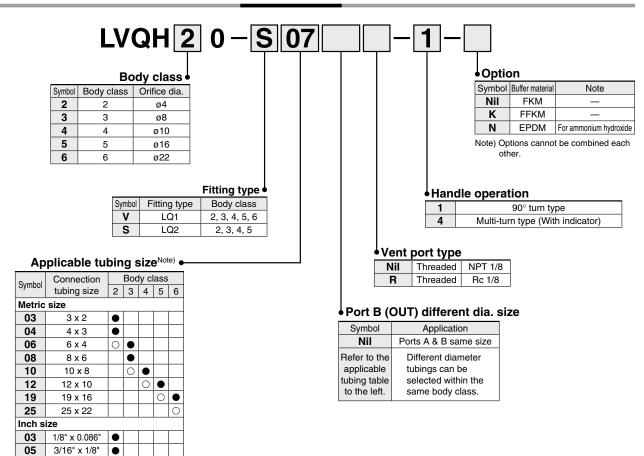

LVQ[25-V[Truck 23-v Differsions (N.O. valve, bouble Acting valve)						(mm)											
Model	Α	В	С	D	Е	_	G	H	1		к		М	N	Р		R	w
Model	^				_	_	G	V□	S□	J	I.		IVI	14		Q	n	
LVQ2 ¹ S-V07	25.5	46	31.5	58	33.6	81	12	89	92	21.8	37	5	7	15	31.3	21	25.3	64
LVQ32S-V11	28.5	57	34.5	69	45.4	99	16.5	106	112	32	50	6	7	20	37.2	25	31.2	82
LVQ41S-V13	28.5	57	34.5	69	45.4	104.5	22	120	126	37.5	55.5	6	7	20	37.2	25	31.2	87.5
LVQ5 ¹ ₂ S-V19	42	84	48	96	75	145	25	164	168	50.2	78.2	10	7	20	50.8	38.5	45	128
LVQ6 ¹ S-V25	42	84	48	96	75	154.5	32	177	_	60	88	10	7	20	50.8	38.5	45	137.5


LVQS Series


Dimensions

With by-pass Double acting valve

Dimensions (Double Acting Valve)									
Α	В	С	D	М	N	Т	U	٧	
25.5	46	31.5	58	7	15	34.3	10.6	7	
25.5	51	31.5	63	7	15	36.9	16.5	10	
25.5	51	31.5	63	7	15	37.9	22	10	
38	76	44	88	7	20	64	25	17	
38	76	44	88	7	20	66	32	17	
	25.5 25.5 25.5 38	A B 25.5 46 25.5 51 25.5 51 38 76	A B C 25.5 46 31.5 25.5 51 31.5 25.5 51 31.5 38 76 44	A B C D 25.5 46 31.5 58 25.5 51 31.5 63 25.5 51 31.5 63 38 76 44 88	A B C D M 25.5 46 31.5 58 7 25.5 51 31.5 63 7 25.5 51 31.5 63 7 38 76 44 88 7	A B C D M N 25.5 46 31.5 58 7 15 25.5 51 31.5 63 7 15 25.5 51 31.5 63 7 15 38 76 44 88 7 20	A B C D M N T 25.5 46 31.5 58 7 15 34.3 25.5 51 31.5 63 7 15 36.9 25.5 51 31.5 63 7 15 37.9 38 76 44 88 7 20 64	A B C D M N T U 25.5 46 31.5 58 7 15 34.3 10.6 25.5 51 31.5 63 7 15 36.9 16.5 25.5 51 31.5 63 7 15 37.9 22 38 76 44 88 7 20 64 25	


Manually Operated Insert Bushing, Integrated Fitting Type Hyper Fitting

LVQH Series

The LQ2 fitting for the insert bushing, integrated fitting type LVQ/LVQH series high-purity chemical liquid valve is to be discontinued as of September 2025. Select the LQ1 fitting instead.

How to Order

 \circ

•

0

1/4" x 5/32"

3/8" x 1/4"

1/2" x 3/8"

3/4" x 5/8"

1" x 7/8"

07 11

13

19

25

Variations

		Model	LVQH20	LVQH30	LVQH40	LVQH50	LVQH60
	Tubing	Orifice diameter	ø4	ø8	ø10	ø16	ø22
			6	10	12	19	25
Туре		Symbol Inch	1/4	3/8	1/2	3/4	1
90° turn type		B	0	0	0	0	0
Multi-turn type			0	0	0	0	0

Symbol

90° turn type

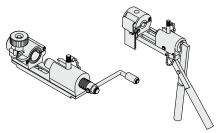
Multi-turn type

Standard Specifications

Mod	lel	LVQH20	LVQH30	LVQH40	LVQH50	LVQH60			
Tubing O.D. Note:	Metric	6	10	12	19	25			
Tubing O.D. Note	Inch	1/4	3/8	1/2	3/4	1			
Fitting type			LQ1 c	or LQ2		LQ1			
Orifice diameter	er	ø4	ø8	ø10	ø16	ø22			
Flow rate	Kv	0.3	1.1	1.6	4.2	6.8			
characteristics	Cv	0.35	1.3	1.9	5	8			
Withstand pres	ssure (MPa)	1							
Fluid pressure	<a→b></a→b>	-98 kPa to 0.5 MPa Note 2) -98 kPa to 0.4 MPa Not							
Back pressure	(MPa)		0.3 or less		0.2 o	r less			
Valve leakage	(cm³/min)		0 (Wit	th water pres	ssure)				
Fluid temperat	ure (°C)	0 to 100							
Ambient temp	erature (°C)			0 to 60					
Woight (kg)	LVQH□0-1	0.12	0.27	0.31	1.10	1.16			
Weight (kg)	LVQH□0-4	0.11	0.20	0.22	0.67	0.87			

Note 1) Refer to page 150 for details of the applicable tubing sizes.

Note 2) This product cannot be used for vacuum retention. Also, connecting the vacuum to the B port may reduce the life of the product.


Be sure to read this before handling the products. Refer to page 501 for Safety Instructions and pages 149 and 150 for Air Operated Chemical Liquid Valve Precautions.

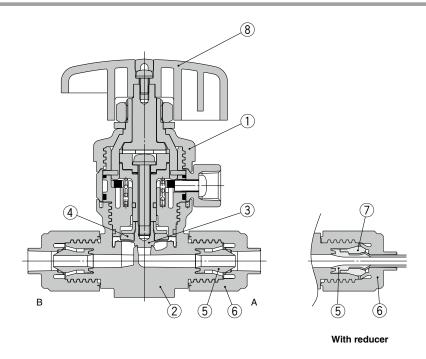
Piping

⚠ Caution

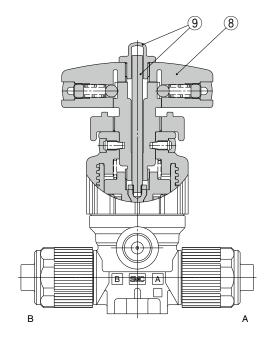
1. Connect tubing by special tools.

For information on tubing connection and special tools, please see the pamphlet "High Purity Fluoropolymer Fittings Hyper Fitting LQ1/2 Series Work Procedure Instructions" (M-E05-1). (The pamphlet can be downloaded from the SMC home page.)

2. Tighten the nut until it touches the end surface of the body, and then tighten it an additional 1/8 turn. If the nut won't turn any further, then it means a sufficient tightening has occurred. Refer to the proper tightening torques shown below.


Tightening Torque for Piping

Dady slass	Torque (N⋅m)					
Body class	LQ1	LQ2				
2	0.3 to 0.4	1.5 to 2.0				
3	0.8 to 1.0	3.0 to 3.5				
4	1.0 to 1.2	7.5 to 9.0				
5	2.5 to 3.0	11.0 to 13.0				
6	5.5 to 6.0	_				



Construction

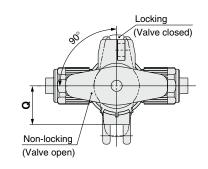
90° turn type

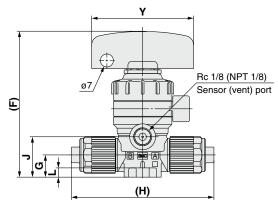
Multi-turn type (With indicator)

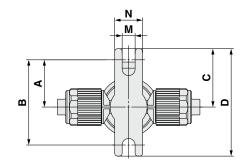
Component Parts

No.	Description	Material
1	Actuator	PVDF
2	Body	PFA
3	Diaphragm	PTFE
		FKM
4	Buffer	EPDM
		FFKM
5	Insert bushing	PFA
6	Nut	PFA
7	Collar	PFA
8	Handle	PVDF
9	Indicator/Cover	PP

LVQH Series

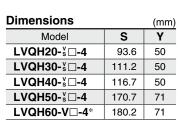

Dimensions

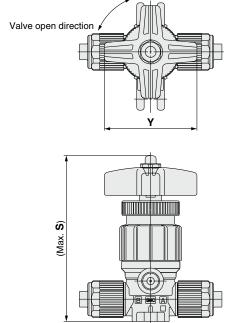

90° turn type


Dimensions								(mm)
Model	Α	В	С	D	F	G	Н	
Wodel	^			"		G	٧□	S□
LVQH20-∜□-1	25.5	46	31.5	58	79	12	70	77
LVQH30-∜□-1	28.5	57	34.5	69	103	16.5	83	95
LVQH40-∜□-1	28.5	57	34.5	69	108	22	95	109
LVQH50-∜□-1	42	84	48	96	165	25	130	141
LVQH60-V□-1*	42	84	48	96	175	32	150	_

Model	J	К	L	M	N	Q	Y
LVQH20- [∨] s □-1	21.8	37	5	7	15	21	55
LVQH30- [∨] s□-1	32	50	6	7	20	25	80
LVQH40- [∨] □-1	37.5	55.5	6	7	20	25	80
LVQH50- [∨] □-1	50.2	78.2	10	7	20	38.5	110
LVQH60-V□-1*	60	88	10	7	20	38.5	110

^{*} The LVQ60 is available only with "V".



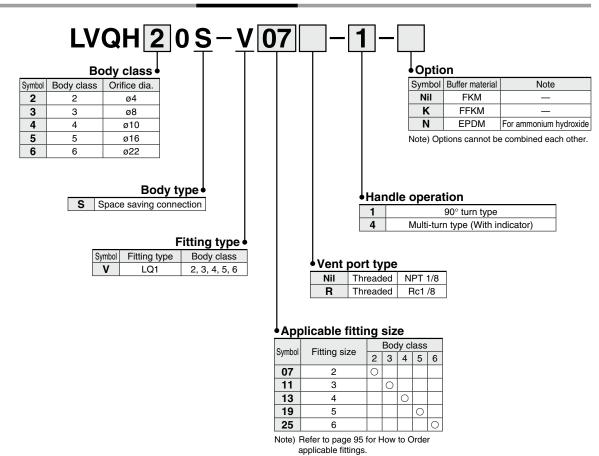


Valve closed direction

Multi-turn type (With indicator)

^{*} The LVQ60 is available only with "V".

^{*} Drawings show the LVQ□0-S.


^{*} Drawings show the LVQ \square 0-S.

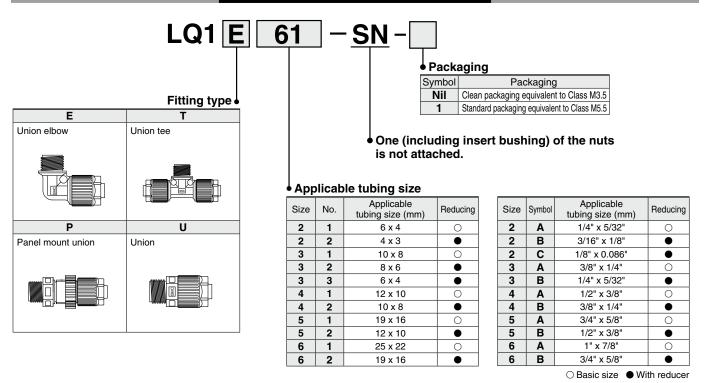
Manually Operated Insert Bushing, Integrated Fitting Type Space Saving/Space Saving Connection

LVQHS Series

How to Order

Variations

			LVQH30S	LVQH40S	LVQH50S	LVQH60S
	Orifice diameter onnection fitting size	ø4	ø8	ø10	ø16	ø22
Type	mbol size	2	3	4	5	6
90° turn type	B HA	0	0	0	0	0
Multi-turn type	∏' -* B + A	0	0	0	0	0


Select the same size as the fitting on

the valve.

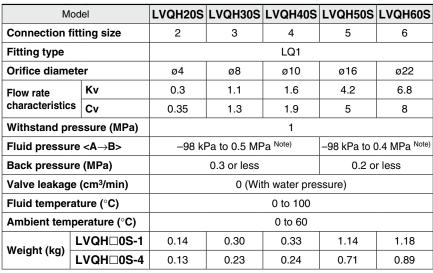
LVQHS Series

How to Order Space Saving Fittings

Note 1) Select the same size as the fitting on the valve.

Piping Example

Standard Specifications



Symbol

90° turn type

Note) This product cannot be used for vacuum retention. Also, connecting the vacuum to the B port may reduce the life of the product.

▲ Specific Product Precautions

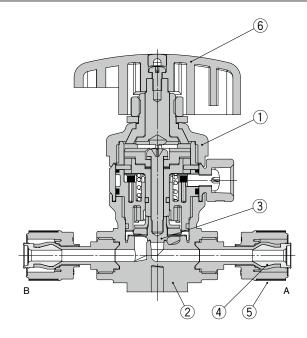
Be sure to read this before handling the products. Refer to page 501 for Safety Instructions and pages 149 and 150 for Air Operated Chemical Liquid Valve Precautions.

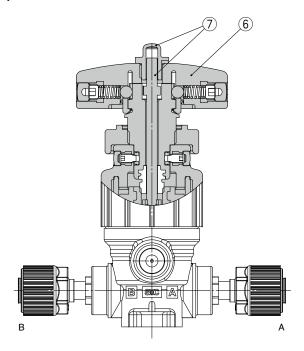
Piping

∧ Caution

- 1. Take extra care with the insert bushing when connecting the fittings.
- 2. Tighten the nut until it touches the end surface of the body, and then tighten it an additional 1/8 turn. If the nut won't turn any further, then it means a sufficient tightening has occurred. Refer to the proper tightening torques shown below.

Tightening Torque for Piping


Dody sless	Torque (N⋅m)
Body class	LQ1
2	0.3 to 0.4
3	0.8 to 1.0
4	1.0 to 1.2
5	2.5 to 3.0
6	5.5 to 6.0


LVQHS Series

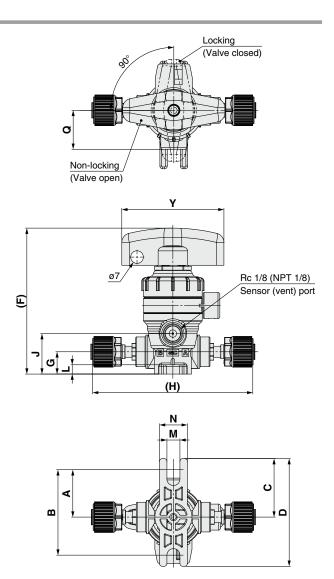
Construction

 90° turn type

Multi-turn type (With indicator)

Component Parts

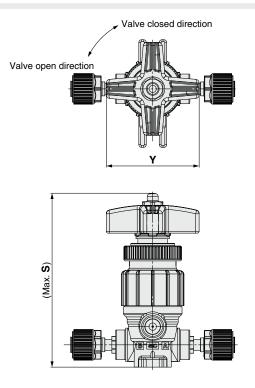
No.	Description	Material
1	Actuator	PVDF
2	Body	PFA
3	Diaphragm	PTFE
4	Insert bushing	PFA
5	Nut	PFA
6	Handle	PVDF
7	Indicator/Cover	PP


Dimensions

90° turn type

Dimensions							
Model	Α	В	С	D	F	G	Н
LVQH20S-V□-1	25.5	46	31.5	58	79	12	89
LVQH30S-V□-1	28.5	57	34.5	69	103	16.5	106
LVQH40S-V□-1	28.5	57	34.5	69	108	22	120
LVQH50S-V□-1	42	84	48	96	165	25	164
LVQH60S-V□-1	42	84	48	96	175	32	177

Model	J	L	М	N	Q	Υ
LVQH20S-V□-1	21.8	5	7	15	21	55
LVQH30S-V□-1	32	6	7	20	25	80
LVQH40S-V□-1	37.5	6	7	20	25	80
LVQH50S-V□-1	50.2	10	7	20	38.5	110
LVQH60S-V□-1	60	10	7	20	38.5	110


 ^{*} Drawings show the LVQ□0-S.

Multi-turn type (With indicator)

Dimensions		(mm)
Model	S	Υ
LVQH20S-V□-4	93.6	50
LVQH30S-V□-4	111.2	50
LVQH40S-V□-4	116.7	50
LVQH50S-V□-4	170.7	71
LVQH60S-V□-4	180.2	71

^{*} Drawings show the LVQ□0-S.

LVQ Series

Fittings and Special Tools

Fittings

How to Change Tubing Sizes

The tubing size can be changed within the same body class (body size) by replacing the nut and insert bushing.

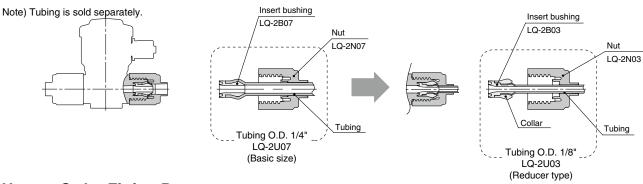
						Conn	ection	tubing	0.D.					
Body class			M	etric si	ze					Ir	nch siz	e		
0.000	4	6	8	10	12	19	25	1/8	3/16	1/4	3/8	1/2	3/4	1
2	•	0	_	_	_	_	_	•	•	0	_	_	_	_
3	_	•	•	0	_	_	_	_	_	•	0	_	_	_
4	_	_	_	•	0	_	_	_	_	_	•	0	_	_
5	_	_	_	_	•	0	_	_	_	_	_	•	0	_
6	_	_	_	_	_	•	0	_	_	_	_	_	•	0

Changing the tubing size

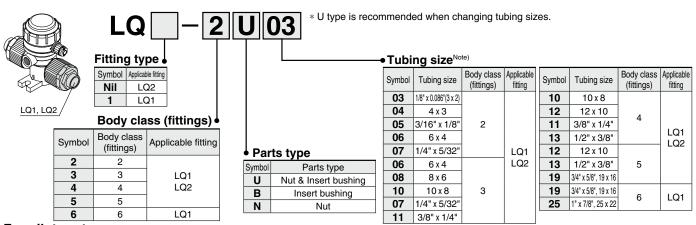
Example) Changing the tubing from an O.D. 1/4" to O.D. 1/8" within the body class 2.

Prepare an insert bushing and nut for 1/8" O.D. tubing (LQ-2U03) and change the tubing size.

(Refer to How to Order Fitting Parts.)


Parts Composition

		Compo	nent parts
	Nut	Insert	Collar (Insert assembly)
O Basic size	Yes	Yes	No
■ Reducer type	Yes	Yes	Yes



1. Connect tubing by special tools.

For information on tubing connection and special tools, please see the pamphlet "High Purity Fluoropolymer Fittings Hyper Fitting LQ1/2 Series Work Procedure Instructions" (M-E05-1). (The pamphlet can be downloaded from the SMC home page.)

How to Order Fitting Parts

For pilot port

Body class (fittings) Body class (fittings) LQ1

Parts type					
Symbol	Parts type				
U	Nut & Insert bushing				
В	Insert bushing				
N	Nut				

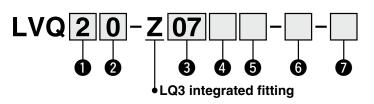
• Tubina sizeNote 1) Note 2)

	Symbol	Tubing size	Body class (fittings)
ĺ	03	1/8" x 0.086"(3 x 2)	
ĺ	04	4 x 3	'

Note) Refer to page 150 for details of the applicable tubing sizes.

Note 1) Cannot change to tubing with different diameter.

Note 2) Refer to page 150 for details of the applicable tubing sizes.



Air Operated Flare, Integrated Fitting Type Hyper Fitting

LVQ-Z Series

How to Order

Body class

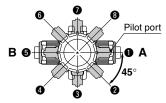
Symbol	Body class	Orifice dia.
2	2	ø4
3	3	ø8
4	4	ø10
5	5	ø16
6	6	ø22

2 Valve type

0	N.C.
1	N.O.
2	Double acting

Note) For valve type combinations, refer to variations on the next page.

4 Pilot port type


Nil	With LQ3 fitting	Connection tubing size 1/8" x 0.086" (3 x 2) Note)
M	With LQ3 fitting	Connection tubing size 4 x 3 Note)
R	Threaded	Rc1/8
N	Threaded	NPT1/8

Note) Refer to page 150 for details of the applicable tubing sizes.

5 Pilot port direction

Symbol	Direction
Nil	0
P2	2
P3	8
P4	4
P5	6
P6	6
P7	0
P8	8

Pilot port piping direction

 Specify the piping direction by part number when ordering the product. Do not change the pilot port direction. (Refer to Precautions on page 150.)

3 Applicable tubing size Note

Metric size 03 3 x 2 ○ 04 4 x 3 ○ 06 6 x 4 ○ 08 8 x 6 ○ 10 10 x 8 ○ 12 12 x 10 ○ 19 19 x 16 ○ 25 25 x 22 ○ Inch size 03 1/8" x 0.086" ○		Applicable tabiling cize								
Size 2 3 4 5 6	Symbol	Connection tubing		Boo	dy cl	ass				
03 3 x 2 04 4 x 3 06 6 x 4 08 8 x 6 10 10 x 8 12 12 x 10 19 19 x 16 25 25 x 22 Inch size 03 1/8" x 0.086"	Syllibol	size	2	3	4	5	6			
04 4 x 3 06 6 x 4 08 8 x 6 10 10 x 8 12 12 x 10 19 19 x 16 25 25 x 22 Inch size 03 1/8" x 0.086"	Metric	size								
06 6 x 4 08 8 x 6 10 10 x 8 12 12 x 10 19 19 x 16 25 25 x 22 Inch size 03 1/8" x 0.086"	03	3 x 2	0							
08 8 x 6 10 10 x 8 12 12 x 10 19 19 x 16 25 25 x 22 Inch size 03 1/8" x 0.086"	04	4 x 3	0							
10 10 x 8 12 12 x 10 19 19 x 16 25 25 x 22 Inch size 03 1/8" x 0.086"	06	6 x 4	0							
12 12 x 10	08	8 x 6		0						
19 19 x 16	10	10 x 8		0						
25 25 x 22 CInch size 03 1/8" x 0.086" C	12	12 x 10			0					
Inch size 03 1/8" x 0.086"	19	19 x 16				0				
03 1/8" x 0.086" O	25	25 x 22					0			
	Inch s	size								
07 1/4" x 5/32" ○	03	1/8" x 0.086"	0							
01 1/4 X 5/62	07	1/4" x 5/32"	0							
11 3/8" x 1/4"	11	3/8" x 1/4"		0						
13 1/2" x 3/8"	13	1/2" x 3/8"			0					
19 3/4" x 5/8"	19	3/4" x 5/8"				0				
25 1" x 7/8"	25	1" x 7/8"					0			

Note) Refer to page 150 for details of the applicable tubing sizes.

Air Operated Flare, Integrated Fitting Type LVQ-Z Series

6 Option 1

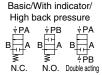
Nil	None
1	With flow rate adjustment
2	With by-pass
3	With flow rate adjustment & by-pass
4	With indicator
5	High back pressure (0.42 MPa)
6	High back pressure with flow rate adjustment
7	High back pressure with by-pass
8	High back pressure with flow rate adjustment & by-pass
9	High back pressure with indicator
24	With indicator & by-pass

Note) Refer to variations in the table below for valve type and option 1 combinations. Options in the same table can not be combined each other.

Option 2

Cumbal				Аp	plica	ble	optio	n				Buffer material Note						
Symbol	Nil	1	2	3	4	5	6	7	8	9	24	Buller material	Note					
Nil	0	0	0	0	0	0	0	0	0	0	0	FKM	_					
J	0	0	_	_	_	_	_	_	_	_	_	FKM	For high temperature					
K	0	0	0	0	0	0	0	0	0	0	0	FFKM	_					
N	0	0	0	0	0	0	0	0	0	0	0	EPDM	For ammonium hydroxide					
Р	0	_	_	_	0	0	_		_	_	_	FKM	High flow type LVQ6 □ only					

Note 1) Options 2 in the same table cannot be combined each other.


Note 2) Only option 1 (with flow rate adjustment) is available for use in high-temperature environments. However, it cannot be used in combination with any of the high back pressure specifications.

Variations

		Model	LVQ20	LVQ30	LVQ40	LVQ50	LVQ60
	Orif	ice diameter	ø4	ø8	ø10	ø16	ø22
	Tubing O.D.	Metric	6	10	12	19	25
Туре	Symbol Valve typ	Inch	1/4	3/8	1/2	3/4	1
Basic	∳PA ∳PB ∳PA	N.C.	0	0	0	0	0
N.C. N.O. Double	B A B A	N.O.	0	0	0	0	0
acting acting	N.C. N.O. Double acting	Double acting	0	0	0	0	0
With flow rate adjustment	ÿPA B∰A ₩ N.C.	N.C.	0	0	0	0	0
With Double acting by-pass	∳PA ∳PA B A B A	N.C.	0	0	0	0	0
N.C.	₹ PB N.C. Double acting	Double acting	0	0	0	0	0
With flow rate adjustment & by-pass	∳PA B ★ A \$ N.C.	N.C.	0	0	0	0	0
With indicator	ÿ PA B III A ⊗ N.C.	N.C.	0	0	0	0	0
High back pressure	ÿ PA B ☐ A W N.C.	N.C.	0	0	0	0	0
With indicator & by-pass	∳PA B A ⊗ N.C.	N.C.	0	0	0	0	0

Symbol

Double acting

∳PA B ∦ A N.C.

Standard Specifications

Mod	del	LVQ20	LVQ30	LVQ40	LVQ50	LVQ60				
Tubing O.D.Note 1	Metric	6 10		12	19	25				
Tubing O.D.	Inch	1/4	3/8	1/2	3/4	1				
Orifice diamet	er	ø4	ø8	ø10	ø16	ø22				
Flow rate	Κv	0.3	1.1	1.6	4.2	6.8 (8.1) Note 2)				
characteristics	Cv	0.35	1.3	1.9	5	8 (9.5) Note 2)				
Withstand pre	ssure (MPa)			1						
Operating pressure	Standard	–98 kF	-98 kPa to 0.5 MPa Note 3) -98 kPa to 0.4 MPa Note 3)							
<a→b flow=""></a→b>	High temperature	–98 kPa to 0.3 MPa Note 3)								
	Standard		0.3 or less	0.2 c	r less					
Back pressure (MPa)	High back pressure									
	High temperature		0.3 or less	0.2 or less						
Valve leakage	(cm³/min)		0 (Wit	th water pres	ssure)					
Pilot air press	ure (MPa)	0.3	to 0.5 (High	back pressu	re: 0.45 to 0	0.55)				
Pilot port size		1/8" (ø3), Rc 1/8, NPT 1/8								
Fluid	Standard	0 to 100								
temperature (°C)	High temperature	0 to 170								
Ambient temp	perature (°C) 0 to 60									
Weight (kg)		0.08	0.18	0.22	0.72	0.87				

Note 1) Refer to page 150 for details of the applicable tubing sizes.

Note 2) (): High flow type

Note 3) This product cannot be used for vacuum retention. Also, connecting the vacuum to the B port may reduce the life of the product.

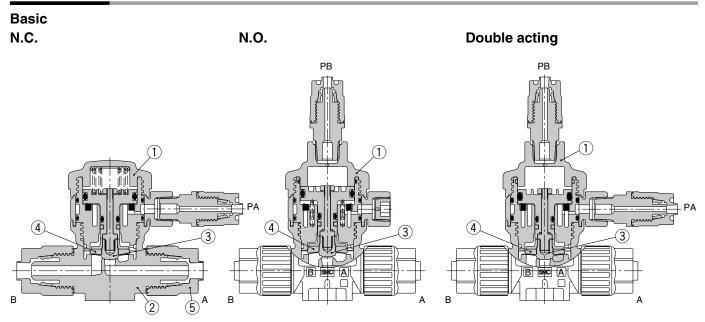
▲ Specific Product Precautions

Be sure to read this before handling the products. Refer to page 501 for Safety Instructions and pages 149 and 150 for Air Operated Chemical Liquid Valve Precautions.

Piping

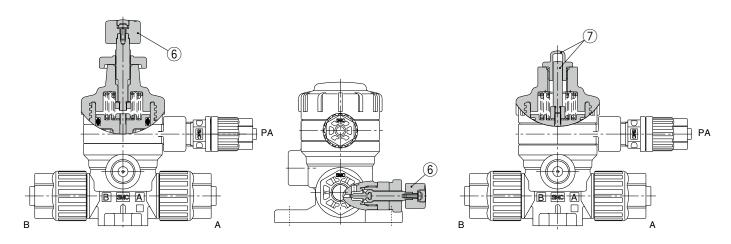
1. Connect tubing by special tools.

For information on tubing fittings and special tools, please see the pamphlet "High Purity Fluoropolymer Fittings Hyper Fitting/Flare Type LQ3 Series Fitting Procedure" (M-E06-4). (The pamphlet can be downloaded from the SMC home page.)


2. Tighten the nut until it touches the end surface of the body, and then tighten it an additional 1/8 turn. If the nut won't turn any further, then it means a sufficient tightening has occurred. Refer to the proper tightening torques shown below.

Tightening Torque for Piping

	. o. quo . opg
Body class	Torque (N⋅m)
2	1.6 to 1.8
3	3.2 to 3.5
4	5.0 to 5.3
5	10.0 to 10.5
6	22.5 to 23.0

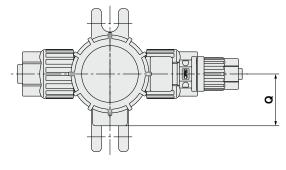

Construction

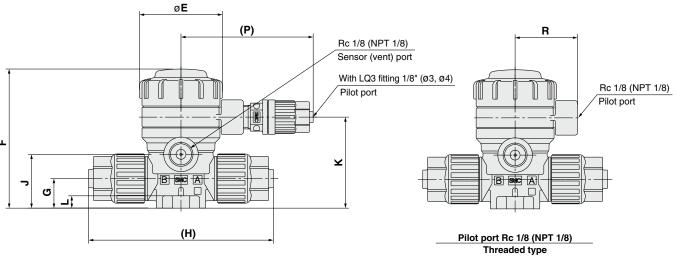
With flow rate adjustment

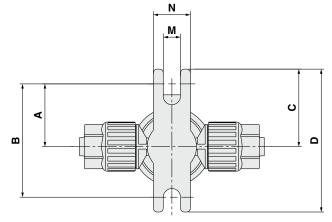
With by-pass

With indicator

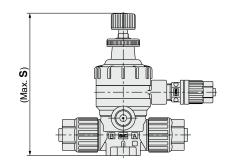
Component Parts

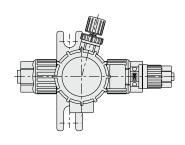

90,	Jonesia Larto	
No.	Description	Material
1	Actuator	PVDF
2	Body	PFA
3	Diaphragm	PTFE
		FKM
4	Buffer	EPDM
		FFKM
5	Nut	PFA
6	Flow rate adjuster	PVDF
7	Indicator/Cover	PP
	,	

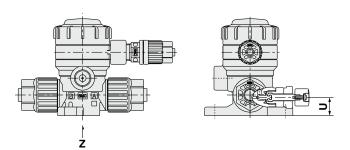

LVQ-Z Series

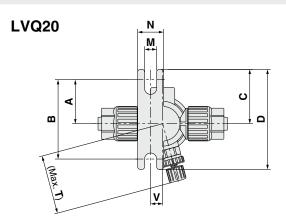

Dimensions

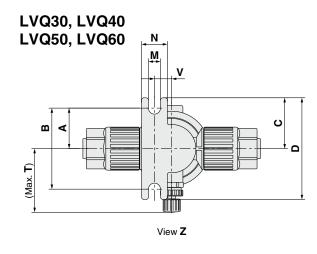
Basic, High back pressure



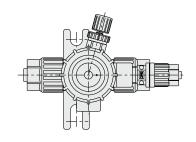

LVQ 0-Z	LVQ □ 0-Z □ □ Dimensions (N.C. Valve) (mn															(mm)
Model	Α	В	С	D	E	F	G	Н	J	K	L	М	N	Р	Q	R
LVQ20-Z□□	25.5	46	31.5	58	33.6	56.5	12	75	21.8	37	5	7	15	53.5	21	25.3
LVQ30-Z□□	28.5	57	34.5	69	45.4	77	16.5	103	32	50	6	7	20	59.5	25	31.2
LVQ40-Z□□	28.5	57	34.5	69	45.4	82.5	22	114	37.5	55.5	6	7	20	59.5	25	31.2
LVQ50-Z□□	42	84	48	96	75	127	25	150	50.2	78.2	10	7	20	73	38.5	45
LVQ60-Z□□	42	84	48	96	75	136.8	32	167	60	88	10	7	20	73	38.5	45


With flow rate adjustment N.C. valve

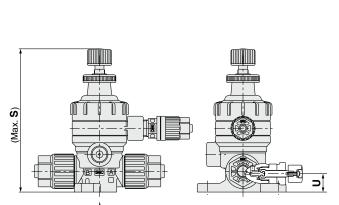

Dimensions	(mm)			
Model	S			
LVQ20-Z□□-1	83			
LVQ30-Z□□-1	113.5			
LVQ40-Z□□-1	119			
LVQ50-Z□□-1	171.5			
LVQ60-Z□□-1	182.5			

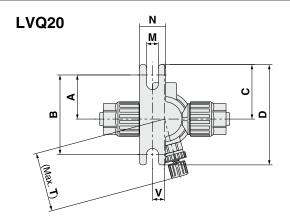


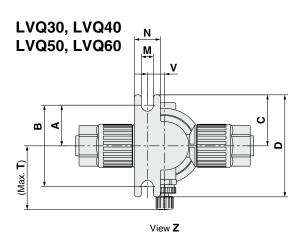
With by-pass N.C. valve



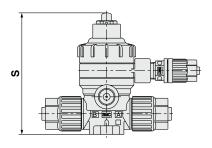
Dimensions	Dimensions														
Model	Α	В	С	D	M	N	Т	U	V						
LVQ20-Z□□-2	25.5	46	31.5	58	7	15	34.3	10.6	7						
LVQ30-Z□□-2	25.5	51	31.5	63	7	15	36.9	16.5	10						
LVQ40-Z□□-2	25.5	51	31.5	63	7	15	37.9	22	10						
LVQ50-Z□□-2	38	76	44	88	7	20	64	25	17						
LVQ60-Z□□-2	38	76	44	88	7	20	66	32	17						

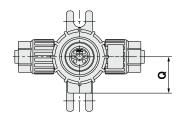

LVQ-Z Series

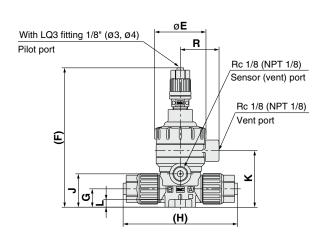

Dimensions

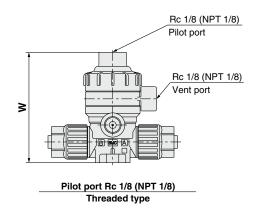

With flow rate adjustment & by-pass N.C. valve

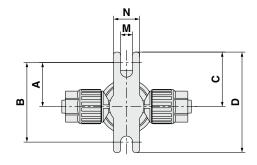
Ż



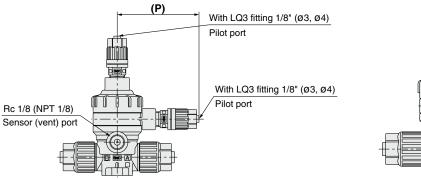

Dimensions	Dimensions (mn														
Model	Α	В	С	D	M	N	S	Т	U	٧					
LVQ20-Z□□-3	25.5	46	31.5	58	7	15	83	34.3	10.6	7					
LVQ30-Z□□-3	25.5	51	31.5	63	7	15	113.5	36.9	16.5	10					
LVQ40-Z□□-3	25.5	51	31.5	63	7	15	119	37.9	22	10					
LVQ50-Z□□-3	38	76	44	88	7	20	171.5	64	25	17					
LVQ60-Z□□-3	38	76	44	88	7	20	182.5	66	32	17					

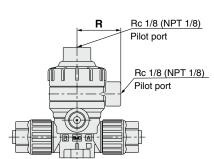

With indicator N.C. valve


Dimensions	(mm)
Model	S
LVQ20-Z□□-4	70.5
LVQ30-Z□□-4	88.5
LVQ40-Z□□-4	94
LVQ50-Z□□-4	134.5
LVQ60-Z□□-4	144

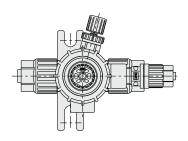


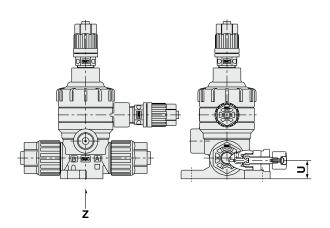
Basic N.O. valve

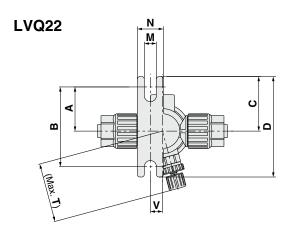


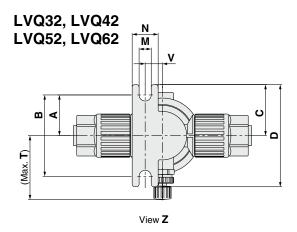


Double acting valve



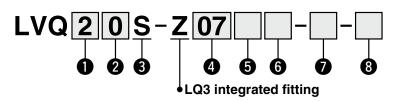

	/Q□ ₂ -Z□□ Dimensions (N.O. Valve, Double Acting Valve)															(mm)	
Model	Α	В	В	D	Е	F	G	Н	J	K	L	М	N	Р	Q	R	W
	25.5	46	31.5	58	33.6	89.5	12	75	21.8	37	5	7	15	53.5	21	25.3	64
	28.5	57	34.5	69	45.4	107.5	16.5	103	32	50	6	7	20	59.5	25	31.2	82
LVQ4 ¹ ₂ -Z□□	28.5	57	34.5	69	45.4	113	22	114	37.5	55.5	6	7	20	59.5	25	31.2	87.5
LVQ5 ₂ -Z	42	84	48	96	75	153.2	25	150	50.2	78.2	10	7	20	73	38.5	45	128
	42	84	48	96	75	163	32	167	60	88	10	7	20	73	38.5	45	137.5


LVQ-Z Series


Dimensions

With by-pass Double acting valve

Dimensions (Double Acting Valve) (mm								(mm)	
Model	Α	В	С	D	M	N	Т	U	٧
LVQ22-Z□□-2	25.5	46	31.5	58	7	15	34.3	10.6	7
LVQ32-Z□□-2	25.5	51	31.5	63	7	15	36.9	16.5	10
LVQ42-Z□□-2	25.5	51	31.5	63	7	15	37.9	22	10
LVQ52-Z□□-2	38	76	44	88	7	20	64	25	17
LVQ62-Z□□-2	38	76	44	88	7	20	66	32	17



Air Operated Flare, Integrated Fitting Type Space Saving/Space Saving Connection

LVQS-Z Series

How to Order

Body class

Symbol	Body class	Orifice dia.		
2	2	ø4		
3	3	ø8		
4	4	ø10		
5	5	ø16		
6	6	ø22		

2 Valve type

0	N.C.					
1	N.O.					
2	Double acting					

Note) For valve type combinations, refer to variations on the next page.

3 Body type

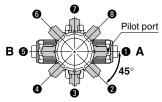
_	- 7 -71
S	Space saving connection

4 Applicable fitting size

Cumbal	Fitting oits		Body class					
Symbol	Fitting size	2	3	4	5	6		
07	2	0						
11	3		0					
13	4			0				
19	5				0			
25	6					0		

Note) Refer to page 113 for How to Order fitting parts. Select a tube with the same size as the valve side fitting.

5 Pilot port type


Nil	With LQ3 fitting	Connection tubing size 1/8" x 0.086" (3 x 2) Note)				
М	With LQ3 fitting	Connection tubing size 4 x 3 Note)				
R	Threaded	Rc1/8				
N	Threaded	NPT1/8				

Note) Refer to page 150 for details of the applicable tubing sizes.

6 Pilot port direction

Symbol	Direction
Nil	0
P2	2
P3	3
P4	4
P5	6
P6	6
P7	•
P8	8

Pilot port piping direction

 Specify the piping direction by part number when ordering the product. Do not change the pilot port direction. (Refer to Precautions on page 150.)

Air Operated Flare, Integrated Fitting Type LVQS-Z Series

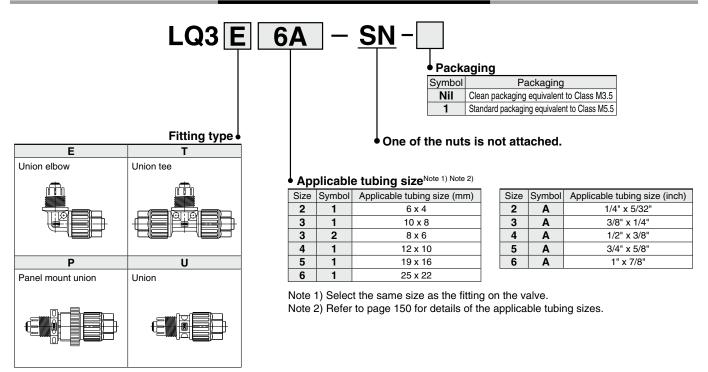
7 Option 1

Nil	None					
1	With flow rate adjustment					
2	With by-pass					
3	With flow rate adjustment & by-pass					
4	With indicator					
5	High back pressure (0.42 MPa)					
6	High back pressure with flow rate adjustment					
7	High back pressure with by-pass					
8	High back pressure with flow rate adjustment & by-pass					
9	High back pressure with indicator					
24	With indicator & by-pass					

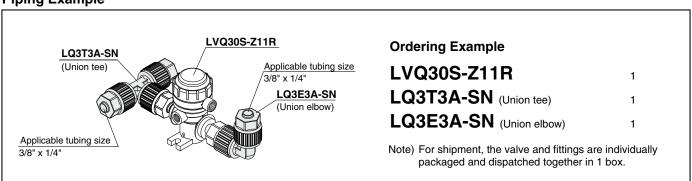
Note) Refer to variations in the table below for valve type and option 1 combinations. Options in the same table can not be combined each other.

3 Option 2

Cumbal				Аp	plica	ble	optio	n				Buffer material	Note
Symbol	Nil	1	2	3	4	5	6	7	8	9	24	buller material	Note
Nil	0	0	0	0	0	0	0	0	0	0	0	FKM	_
J	0	0	_	_	_	_	_	_	_	_	_	FKM	For high temperature
K	0	0	0	0	0	0	0	0	0	0	0	FFKM	_
N	0	0	0	0	0	0	0	0	0	0	0	EPDM	For ammonium hydroxide
Р	0	_	_	_	0	0	_	_	_	_	_	FKM	High flow type LVQ6 □ only


Note 1) Options 2 in the same table cannot be combined each other.

Note 2) Only option 1 (with flow rate adjustment) is available for use in high-temperature environments. However, it cannot be used in combination with any of the high back pressure specifications.


Variations

		Model	LVQ20S	LVQ30S	LVQ40S	LVQ50S	LVQ60S
	Connecti	ice diameter	ø4	ø8	ø10	ø16	ø22
Туре	Symbol Valve typ	on fitting size	2	3	4	5	6
Basic N.C.	∳PA ∳PB ∲PA	N.C.	0	0	0	0	0
N.O. Double	B A B A B A A A A A A A A A A A A A A A	N.O.	0	0	0	0	0
acting	N.C. N.O. Double acting	Double acting	0	0	0	0	0
With flow rate adjustment	∳PA B∰A S N.C.	N.C.	0	0	0	0	0
With by-pass Double acting	ÿРА ÿРА В А В А	N.C.	0	0	0	0	0
N.C.	₹ ÅPB N.C. Double acting	Double acting	0	0	0	0	0
With flow rate adjustment & by-pass	∳PA B≭A S N.C.	N.C.	0	0	0	0	0
With indicator	ÿ PA B H A	N.C.	0	0	0	0	0
High back pressure	ÿ PA B ☐ A ≫ N.C.	N.C.	0	0	0	0	0
With indicator & by-pass	∳ PA B A S N.C.	N.C.	0	0	0	0	0

How to Order Space Saving Fittings

Piping Example

Standard Specifications

Symbol

A B A PB
O. Double acting

Ñ.C.

Mod	el	LVQ20S	LVQ30S	LVQ40S	LVQ50S	LVQ60S			
Connection fitt	ing size	2	3	4	5	6			
Orifice diamete	er	ø4	ø8	ø10	ø16	ø22			
Flow rate	Kv	0.3	1.1	1.6	4.2	6.8 (8.1) Note 1)			
characteristics	Cv	0.35	1.3	1.9	5	8 (9.5) Note 1)			
Withstand pres	sure (MPa)			1					
Operating pressure	Standard	–98 kF	a to 0.5 MP	a Note 3)	-98 kPa to 0	.4 MPa Note 3)			
<a→b flow=""></a→b>	High temperature		–98 kP	a to 0.3 MP	a Note 3)				
	Standard		0.3 or less	0.2 or less					
Back pressure (MPa)	High back pressure	0.42 or less							
(High temperature		0.3 or less	0.2 or less					
Valve leakage ((cm³/min)	0 (With water pressure)							
Pilot air pressu	ıre (MPa)	0.3 to 0.5 (High back pressure: 0.45 to 0.55)							
Pilot port sizeN	ote 2)	1/8" (ø3), ø4, Rc 1/8, NPT 1/8							
Fluid Standard		0 to 100							
temperature (°C)	High temperature	0 to 170							
Ambient tempe	erature (°C)	0 to 60							
Weight (kg)		0.085	0.175	0.223	0.725	0.835			

Note 1) (): High flow type

Note 2) Refer to page 150 for details of the applicable tubing sizes.

Note 3) This product cannot be used for vacuum retention. Also, connecting the vacuum to the B port may reduce the life of the product.

▲ Specific Product Precautions

Be sure to read this before handling the products. Refer to page 501 for Safety Instructions and pages 149 and 150 for Air Operated Chemical Liquid Valve Precautions.

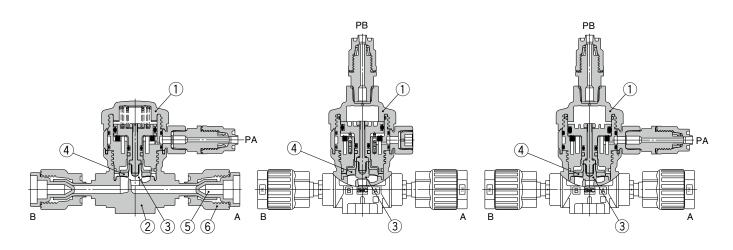
Piping

⚠ Caution

1. Tighten the nut until it touches the end surface of the body, and then tighten it an additional 1/8 turn. If the nut won't turn any further, then it means a sufficient tightening has occurred. Refer to the proper tightening torques shown below.

Tightening Torque for Piping

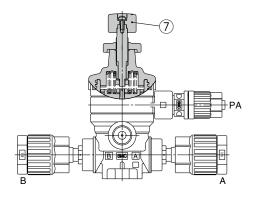
Body class	Torque (N⋅m)
2	1.6 to 1.8
3	3.2 to 3.5
4	5.0 to 5.3
5	10.0 to 10.5
6	22.5 to 23.0

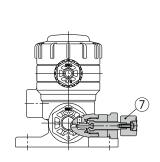

LVQS-Z Series

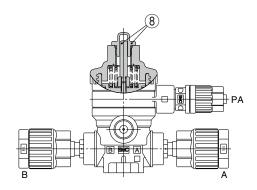
Construction

Basic N.C.

N.O.

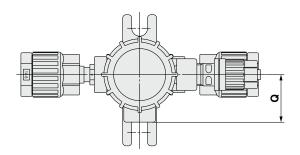

Double acting

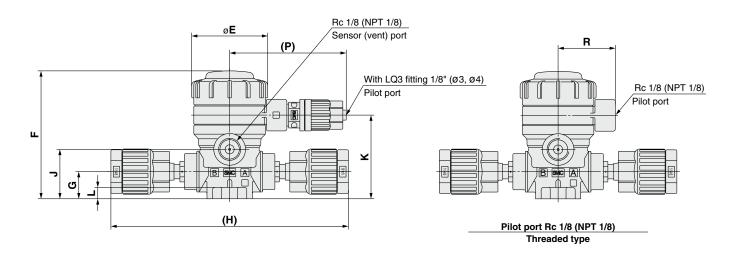


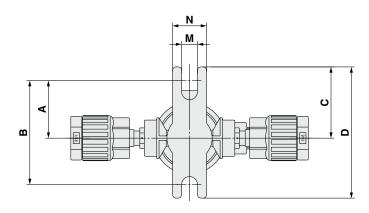

With flow rate adjustment

With by-pass

With indicator

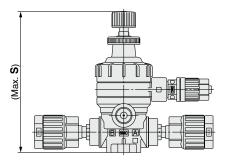

Component Parts


No.	Description	Material
1	Actuator	PVDF
2	Body	PFA
3	Diaphragm	PTFE
		FKM
4	Buffer	EPDM
		FFKM
5	Plug	PP
6	Nut	PFA
7	Flow rate adjuster	PVDF
8	Indicator/Cover	PP

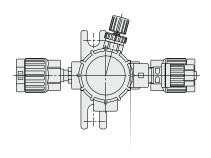

Dimensions

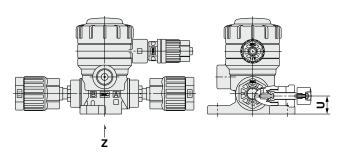
Basic, High back pressure

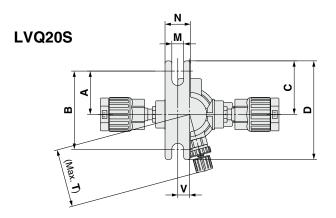
N.C. valve

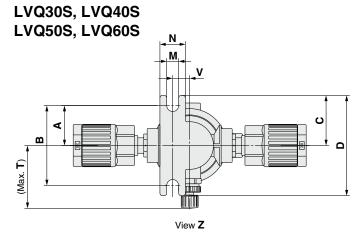

L	_VQ□0S-Z□	Dim	ensi	ons (N	I.C. V	alve)											(mm)
	Model	Α	В	С	D	E	F	G	Н	J	K	L	M	N	Р	Q	R
	LVQ20S-Z□	25.5	46	31.5	58	33.6	56.5	12	105	21.8	37	5	7	15	53.5	21	25.3
	LVQ30S-Z□	28.5	57	34.5	69	45.4	77	16.5	137	32	50	6	7	20	59.5	25	31.2
	LVQ40S-Z□	28.5	57	34.5	69	45.4	82.5	22	151	37.5	55.5	6	7	20	59.5	25	31.2
	LVQ50S-Z□	42	84	48	96	75	127	25	202	50.2	78.2	10	7	20	73	38.5	45
	LVQ60S-Z□	42	84	48	96	75	136.8	32	236	60	88	10	7	20	73	38.5	45

LVQS-Z Series

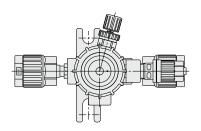

Dimensions

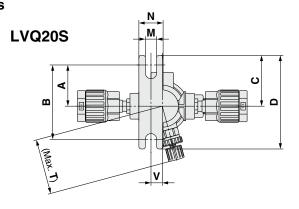

With flow rate adjustment, High back pressure with flow rate adjustment N.C. valve

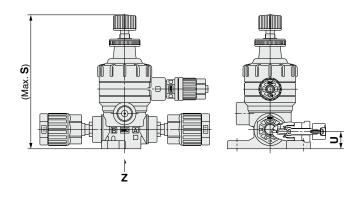

Dimensions	(mm)
Model	S
LVQ20S-Z□-1	83
LVQ30S-Z□-1	113.5
LVQ40S-Z□-1	119
LVQ50S-Z□-1	171.5
LVQ60S-Z□-1	182.5

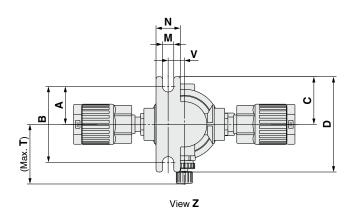


With by-pass, High back pressure with by-pass N.C. valve

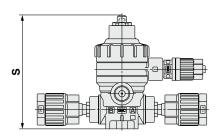





Dimensions									(mm)
Model	Α	В	С	D	M	N	Т	U	٧
LVQ20S-Z□-2	25.5	46	31.5	58	7	15	34.3	10.6	7
LVQ30S-Z□-2	25.5	51	31.5	63	7	15	36.9	16.5	10
LVQ40S-Z□-2	25.5	51	31.5	63	7	15	37.9	22	10
LVQ50S-Z□-2	38	76	44	88	7	20	64	25	17
LVQ60S-Z□-2	38	76	44	88	7	20	66	32	17


With flow rate adjustment & by-pass, High back pressure with flow rate adjustment & by-pass N.C. valve

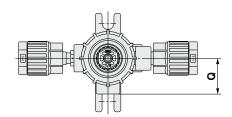
LVQ30S, LVQ40S LVQ50S, LVQ60S

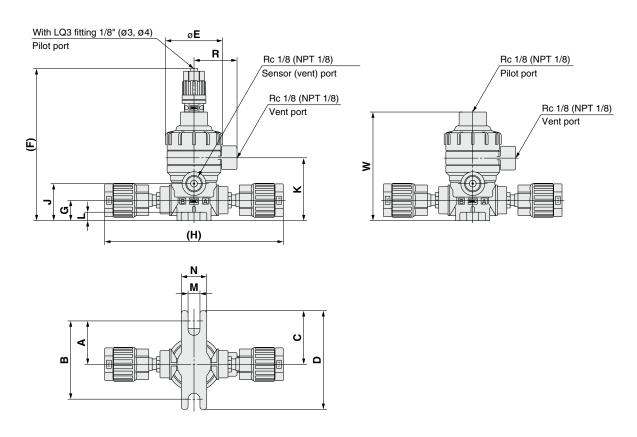


Dimensions										(mm)
Model	Α	В	С	D	M	N	S	Т	U	V
LVQ20S-Z□-3	25.5	46	31.5	58	7	15	83	34.3	10.6	7
LVQ30S-Z□-3	25.5	51	31.5	63	7	15	113.5	36.9	16.5	10
LVQ40S-Z□-3	25.5	51	31.5	63	7	15	119	37.9	22	10
LVQ50S-Z□-3	38	76	44	88	7	20	171.5	64	25	17
LVQ60S-Z□-3	38	76	44	88	7	20	182.5	66	32	17

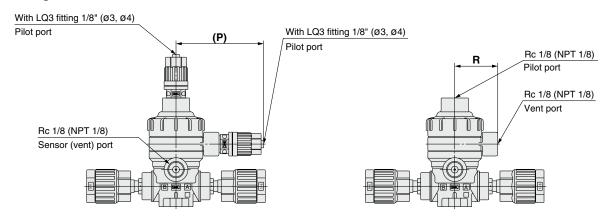
With indicator, High back pressure with indicator N.C. valve

Dimensions	(mm)
Model	S
LVQ20S-Z□-4	70.5
LVQ30S-Z□-4	88.5
LVQ40S-Z□-4	94
LVQ50S-Z□-4	134.5
LVQ60S-Z□-4	144

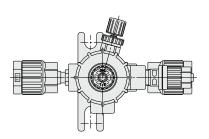




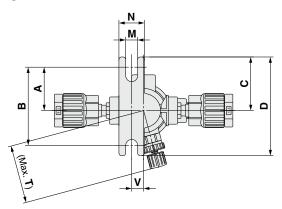
LVQS-Z Series


Dimensions

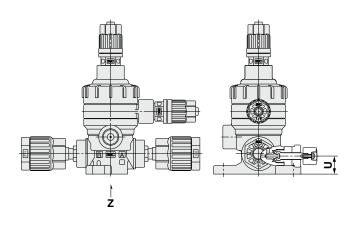
Basic N.O. valve

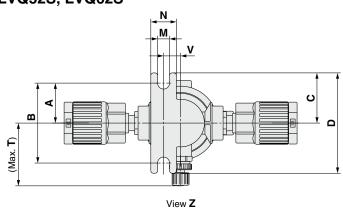


Double acting valve



LVQ□2S-Z□	Dim	ensic	ns (N	.O. V	alve,	Double	Actir	ig Val	lve)								(mm)
Model	Α	В	С	D	Е	F	G	Н	J	K	L	M	N	Р	Q	R	W
LVQ2 ¹ S-Z□	25.5	46	31.5	58	33.6	89.5	12	105	21.8	37	5	7	15	53.5	21	25.3	64
LVQ3 ¹ S-Z□	28.5	57	34.5	69	45.4	107.5	16.5	137	32	50	6	7	20	59.5	25	31.2	82
LVQ4 ¹ S-Z□	28.5	57	34.5	69	45.4	113	22	151	37.5	55.5	6	7	20	59.5	25	31.2	87.5
LVQ5½S-Z□	42	84	48	96	75	153.2	25	202	50.2	78.2	10	7	20	73	38.5	45	128
LVQ6 ¹ S-Z□	42	84	48	96	75	163	32	236	60	88	10	7	20	73	38.5	45	137.5

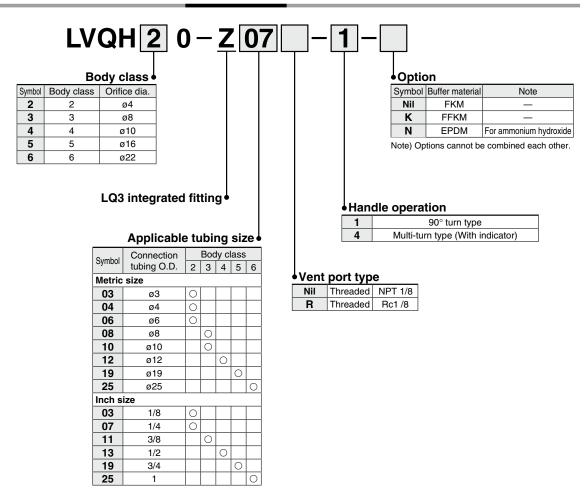

With by-pass Double acting valve



LVQ22S

LVQ32S, LVQ42S LVQ52S, LVQ62S

Dimensions	(Double	Actina	Valval
Dimensions	(Double	ACTING	vaivei


Dillieliaiolia (DC	Jubie	ACUII	y vai	ve)					(mm)
Model	Α	В	С	D	M	N	T	U	٧
LVQ22-S-Z□-2	25.5	46	31.5	58	7	15	34.3	10.6	7
LVQ32-S-Z□-2	25.5	51	31.5	63	7	15	36.9	16.5	10
LVQ42-S-Z□-2	25.5	51	31.5	63	7	15	37.9	22	10
LVQ52-S-Z□-2	38	76	44	88	7	20	64	25	17
LVQ62-S-Z□-2	38	76	44	88	7	20	66	32	17

Manually Operated Flare, Integrated Fitting Type Hyper Fitting

LVQH-Z Series

How to Order

Variations

	Ovin	Model	LVQH20	LVQH30	LVQH40	LVQH50	LVQH60
	Tubing O.D.	De diameter	ø4	ø8	ø10	ø16	ø22
	30.D.	Metric	6	10	12	19	25
Туре	Symbol	Inch	1/4	3/8	1/2	3/4	1
90° turn type		B A	0	0	0	0	0
Multi-turn type		∏ * 3	0	0	0	0	0

Standard Specifications

Symbol

90° turn type

Mod	lel	LVQH20	LVQH30	LVQH40	LVQH50	LVQH60			
Tubing O.D.	Metric	6	10	12	19	25			
Tubing O.D.	Inch	1/4	3/8	1/2	3/4	1			
Orifice diamete	er	ø4	ø8	ø10	ø16	ø22			
Flow rate	Kv	0.3	1.1	1.6	4.2	6.8			
characteristics	Cv	0.35	1.3	1.9	5	8			
Withstand pres	ssure (MPa)		1						
Fluid pressure	<a→b></a→b>	–98 kl	-98 kPa to 0.5 MPa Note) -98 kPa to 0.4 MPa						
Back pressure	(MPa)	0.3 or less 0.2 or less							
Valve leakage	(cm³/min)	0 (With water pressure)							
Fluid temperat	ure (°C)	0 to 100							
Ambient temperature (°C)				0 to 60					
Woight (kg)	LVQH□0-1	0.12	0.27	0.32	1.14	1.20			
Weight (kg)	LVQH□0-4	0.11	0.25	0.23	0.72	0.82			

Note) This product cannot be used for vacuum retention. Also, connecting the vacuum to the B port may reduce the life of the product.

Be sure to read this before handling the products. Refer to page 501 for Safety Instructions and pages 149 and 150 for Air Operated Chemical Liquid Valve Precautions.

Piping

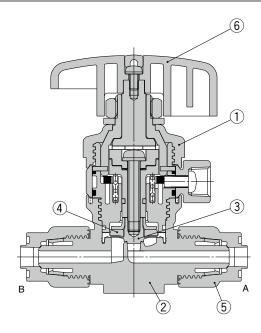
⚠ Caution

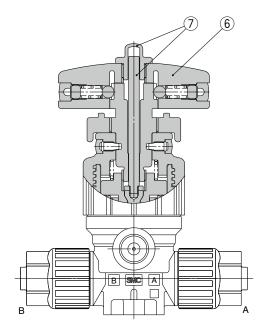
1. Connect tubing by special tools.

For information on tubing fittings and special tools, please see the pamphlet "High Purity Fluoropolymer Fittings Hyper Fitting Flare Type LQ3 Series Fitting Procedure" (M-E06-4). (The pamphlet can be downloaded from the SMC home page.)

2. Tighten the nut until it touches the end surface of the body, and then tighten it an additional 1/8 turn. If the nut won't turn any further, then it means a sufficient tightening has occurred. Refer to the proper tightening torques shown below.

Tightening Torque for Piping

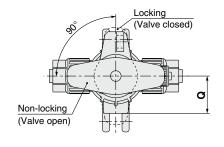

orque for r iping
Torque (N·m)
1.6 to 1.8
3.2 to 3.5
5.0 to 5.3
10.0 to 10.5
22.5 to 23.0


LVQH-Z Series

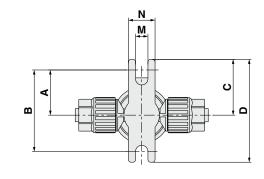
Construction

 90° turn type

Multi-turn type (With indicator)

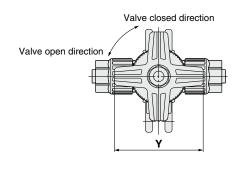


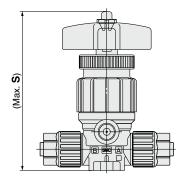
Component Parts

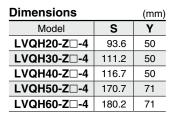

No.	Description	Material
1	Actuator	PVDF
2	Body	PFA
3	Diaphragm	PTFE
		FKM
4	Buffer	EPDM
		FFKM
5	Nut	PFA
6	Handle	PVDF
7	Indicator/Cover	PP

Dimensions

90° turn type

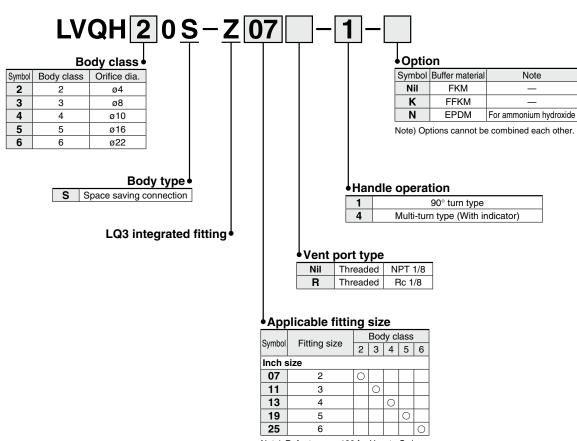





Dimensions							(mm)
Model	Α	В	С	D	F	G	Н
LVQH20-Z□□-1	25.5	46	31.5	58	79	12	75
LVQH30-Z□□-1	28.5	57	34.5	69	103	16.5	103
LVQH40-Z□□-1	28.5	57	34.5	69	108	22	114
LVQH50-Z□□-1	42	84	48	96	165	25	150
LVQH60-Z□□-1	42	84	48	96	175	32	167

Model	J	K	L	M	N	Q	Υ
LVQH20-Z□□-1	21.8	37	5	7	15	21	55
LVQH30-Z□□-1	32	50	6	7	20	25	80
LVQH40-Z□□-1	37.5	55.5	6	7	20	25	80
LVQH50-Z□□-1	50.2	78.2	10	7	20	38.5	110
LVQH60-Z□□-1	60	88	10	7	20	38.5	110

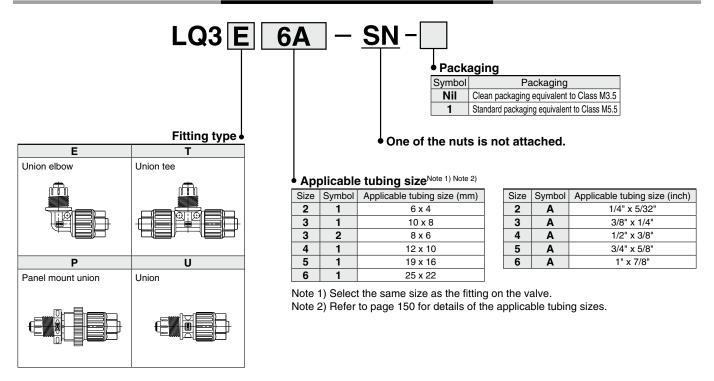
Multi-turn type (With indicator)



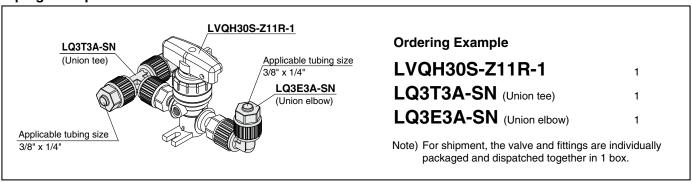
Manually Operated Flare, Integrated Fitting Type Space Saving/Space Saving Connection

LVQHS-Z Series ROHS

How to Order



Note) Refer to page 126 for How to Order applicable fittings. Select the same size as fitting on the


Variations

	Model	LVQ20S	LVQ30S	LVQ40S	LVQ50S	LVQ60S
C	Orifice diameter Onnection fitting size	ø4	ø8	ø10	ø16	ø22
Type	nbol fitting size	2	3	4	5	6
90° turn type	B	0	0	0	0	0
Multi-turn type	# B	0	0	0	0	0

How to Order Space Saving Fittings

Piping Example

LVQHS-Z Series

Symbol

90° turn type

Multi-turn type

Standard Specifications

Model		LVQH20S	LVQH30S	LVQH40S	LVQH50S	LVQH60S	
Connection fitting size		2	3	4	5	6	
Orifice diameter		ø4	ø8	ø10	ø16	ø22	
Flow rate	Kv	0.3	1.1	1.6	4.2	6.8	
characteristic	Cv	0.35	1.3	1.9	5	8	
Withstand pr	essure (MPa)			1			
Fluid pressu	re <a→b></a→b>	-98 kPa to 0.5 MPa ^{Note)} −98 kPa				to 0.4 MPa Note)	
Back pressu	re (MPa)	0.3 or less 0.2 or less				r less	
Valve leakag	e (cm³/min)		0 (Wit	th water pres	ssure)		
Fluid temper	ature (°C)	0 to 100					
Ambient tem	perature (°C)	0 to 60					
Woight (kg)	LVQH□0S-1	0.14	0.28	0.34	1.14	1.15	
Weight (kg)	LVQH□0S-4	0.13	0.21	0.25	0.72	0.86	

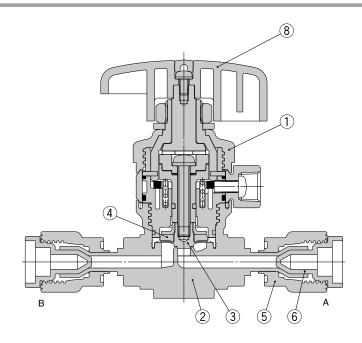
Note) This product cannot be used for vacuum retention. Also, connecting the vacuum to the B port may reduce the life of the product.

▲ Specific Product Precautions

Be sure to read this before handling the products. Refer to page 501 for Safety Instructions and pages 149 and 150 for Air Operated Chemical Liquid Valve Precautions.

Piping

⚠ Caution


1. Tighten the nut until it touches the end surface of the body, and then tighten it an additional 1/8 turn. If the nut won't turn any further, then it means a sufficient tightening has occurred. Refer to the proper tightening torques shown below.

Tightening Torque for Piping


Body class	Torque (N⋅m)
2	1.6 to 1.8
3	3.2 to 3.5
4	5.0 to 5.3
5	10.0 to 10.5
6	22.5 to 23.0

Construction

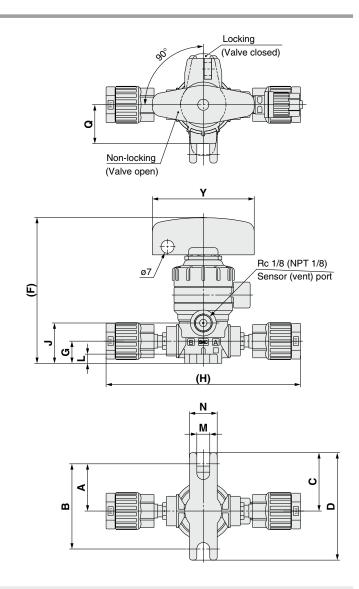
90° turn type

Multi-turn type (With indicator)

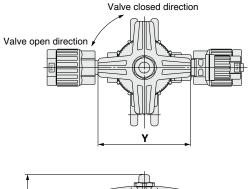
Component Parts

No.	Description	Material
1	Actuator	PVDF
2	Body	PFA
3	Diaphragm	PTFE
		FKM
4	Buffer	EPDM
		FFKM
5	Nut	PFA
6	Plug	PP
7	Indicator/Cover	PP
8	Handle	PVDF

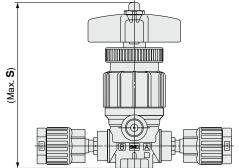
SMC


LVQHS-Z Series

Dimensions

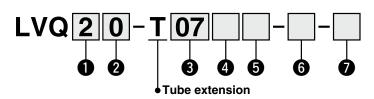

90° turn type

Dimensions (mm) Model Α В С D F G Н LVQH20S-Z□-1 25.5 46 31.5 58 79 12 105 LVQH30S-Z□-1 28.5 57 34.5 69 103 16.5 137 LVQH40S-Z□-1 28.5 57 34.5 108 22 151 69 LVQH50S-Z□-1 42 84 48 165 25 202 96 LVQH60S-Z□-1 42 84 48 175 32 236 96


Model	J	K	L	M	N	Q	Υ
LVQH20S-Z□-1	21.8	37	5	7	15	21	55
LVQH30S-Z□-1	32	50	6	7	20	25	80
LVQH40S-Z□-1	37.5	55.5	6	7	20	25	80
LVQH50S-Z□-1	50.2	78.2	10	7	20	38.5	110
LVQH60S-Z□-1	60	88	10	7	20	38.5	110

Multi-turn type (With indicator)

Dimensions		(mm)
Model	S	Υ
LVQH20S-Z□-4	93.6	50
LVQH30S-Z□-4	111.2	50
LVQH40S-Z□-4	116.7	50
LVQH50S-Z□-4	170.7	71
LVQH60S-Z□-4	180.2	71
129		



Air Operated Tube Extension Type LVQ-T Series

How to Order

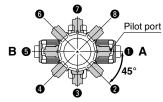
Body class

Symbol	Body class	Orifice dia.
2	2	ø4
3	3	ø8
4	4	ø10
5	5	ø16
6	6	ø22

4 Pilot port type

Nil	With LQ1 fitting	Connection tubing O.D. 1/8" (ø3)
M	With LQ1 fitting	Connection tubing O.D. ø4
R	Threaded	Rc1/8
N	Threaded	NPT1/8

2 Valve type


0	N.C.
1	N.O.
2	Double acting

Note) For valve type combinations, refer to variations on the next page.

5 Pilot port direction

Direction
0
2
3
4
6
6
0
8

Pilot port piping direction

 Specify the piping direction by part number when ordering the product. Do not change the pilot port direction. (Refer to Precautions on page 150.)

3 Applicable tubing size

<u> </u>	ppiicable tubiii	<i>J</i> 314						
Symbol	Connection tubing		Boo	dy cl	ass			
Symbol	O.D.	2	3	4	5	6		
Metric	size							
06	ø6	0						
10	ø10		0					
12	ø12			0				
19	ø19				0			
25	ø25					0		
Inch s	Inch size							
07	1/4	0						
11	3/8		0					
13	1/2			0				
19	3/4				0			
25	1					0		

Air Operated LVQ-T Series

6 Option 1

Nil	None
1	With flow rate adjustment
2	With by-pass
3	With flow rate adjustment & by-pass
4	With indicator
5	High back pressure (0.42 MPa)
6	High back pressure with flow rate adjustment
7	High back pressure with by-pass
8	High back pressure with flow rate adjustment & by-pass
9	High back pressure with indicator

Note) Refer to variations in the table below for valve type and option 1 combinations. Options in the same table can not be combined each other.

7 Option 2

Cumbal	Applicable option									Buffer material	Note	
Symbol	Nil	1	2	3	4	5	6	7	8	9	buller material	Note
Nil	0	0	0	0	0	0	0	0	0	0	FKM	_
J	0	0	_	_	_	_	_	_	_	_	FKM	For high temperature
K	0	0	0	0	0	0	0	0	0	0	FFKM	_
N	0	0	0	0	0	0	0	0	0	0	EPDM	For ammonium hydroxide
Р	0	_	_	_	0	0	_	_	_	_	FKM	High flow type LVQ6 □ only

Note 1) Options 2 in the same table cannot be combined each other.

Note 2) Only option 1 (with flow rate adjustment) is available for use in high-temperature environments. However, it cannot be used in combination with any of the high back pressure specifications.

Variations

		Model	LVQ20	LVQ30	LVQ40	LVQ50	LVQ60
	Or	ifice diameter	ø4	ø8	ø10	ø16	ø22
	Tubing O.D.	Metric	6	10	12	19	25
Туре	Symbol Valve ty	/pe Inch	1/4	3/8	1/2	3/4	1
Basic N.C.	†PA †PB †PA	N.C.	0	0	0	0	0
N.O. Double	B A B A B A	N.O.	0	0	0	0	0
acting acting		Double acting	0	0	0	0	0
With flow rate adjustment	∀PA B → A ⊗ N.C.	N.C.	0	0	0	0	0
With by-pass	∳PA ∳PA B A B A	N.C.	0	0	0	0	0
N.C. Double acting	₹ 4PB N.C. Double acting	Double acting	0	0	0	0	0
With flow rate adjustment & by-pass	∳PA B ★ A N.C.	N.C.	0	0	0	0	0
With indicator	∳PA B A ⊗ N.C.	N.C.	0	0	0	0	0
High back pressure	∀PA B A N.C.	N.C.	0	0	0	0	0

LVQ-T Series

Symbol

Basic/With indicator/ High back pressure Ñ.C.

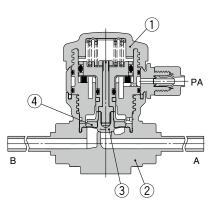
Double acting

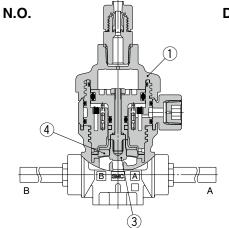
With by-pass/ With indicator & by-pass With flow rate adjustment B ≱ N.C.

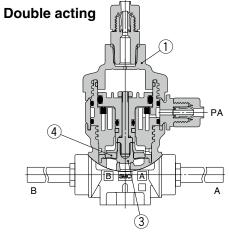
With flow rate adjustment & by-pass Ñ.C.

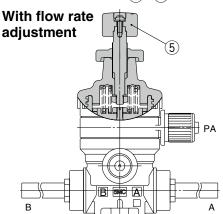
Standard Specifications

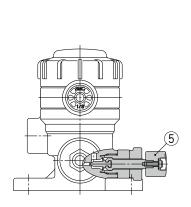
Mod	Model		LVQ30	LVQ40	LVQ50	LVQ60	
Tubing O.D.	Metric	6	10	12	19	25	
Tubing O.D.	Inch	1/4	3/8	1/2	3/4	1	
Orifice diamet	er	ø4	ø8	ø10	ø16	ø22	
Flow rate	Kv	0.3	1.1	1.6	4.2	6.8 (8.1) Note 1)	
characteristics	Cv	0.35	1.3	1.9	5	8 (9.5) Note 1)	
Withstand pre	ssure (MPa)		,	1	,		
Operating pressure	Standard	–98 kF	Pa to 0.5 MPa	-98 kPa to 0.4 MPa Note 2)			
<a→b flow=""></a→b>	High temperature	−98 kPa to 0.3 MPa Note 2)					
Daals massasses	Standard		0.3 or less	0.2 or less			
Back pressure (MPa)	High back pressure	0.42 or less 0.3 or less 0.2 or l					
(WII a)	High temperature					r less	
Valve leakage	(cm³/min)	0 (With water pressure)					
Pilot air press	ure (MPa)	0.3	0.3 to 0.5 (High back pressure: 0.45 to 0.55)				
Pilot port size		1/8" (ø3), ø4, Rc 1/8, NPT 1/8					
Fluid	Standard	0 to 100					
temperature (°C)	High temperature			0 to 170			
Ambient temp	erature (°C)	0 to 60					
Weight (kg)		0.08 0.15 0.16 0.60 0.70					

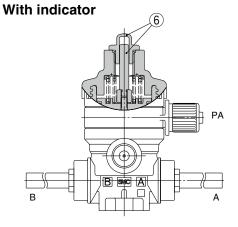

With by-pass


Note 1) (): High flow type


Note 2) This product cannot be used for vacuum retention. Also, connecting the vacuum to the B port may reduce the life of the product.

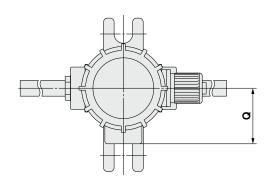

Construction

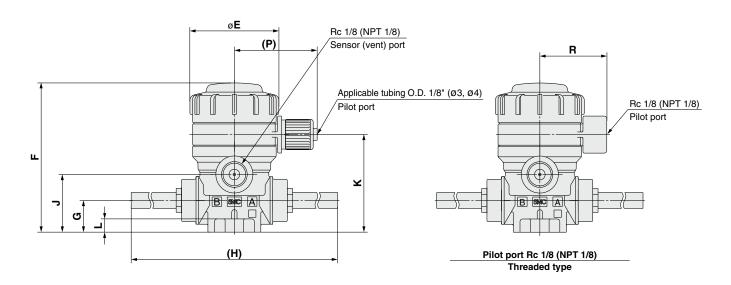


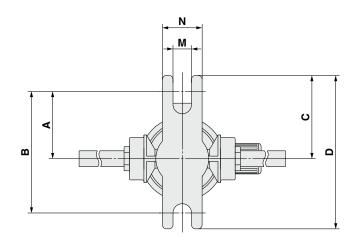


Component Parts

No.	Description	Material
1	Actuator	PVDF
2	Body	PFA
3	Diaphragm	PTFE

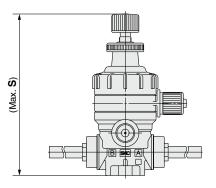

Material
Iviateriai
FKM
EPDM
FFKM
PVDF
PP



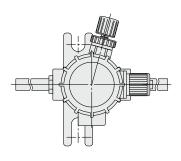

Dimensions

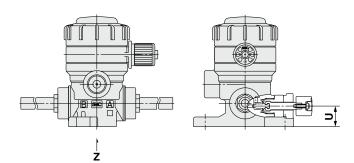
Basic, High back pressure

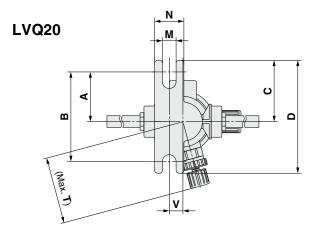
LVQ□0-T□	Dim	Dimensions (N.C. Valve)											(mm)			
Model	Α	В	С	D	Е	F	G	Н	J	K	L	M	N	Р	Q	R
LVQ20-T□	25.5	46	31.5	58	33.6	56.5	12	111.5	21.8	37	5	7	15	31.3	21	25.3
LVQ30-T□	28.5	57	34.5	69	45.4	77	16.5	136	32	50	6	7	20	37.2	25	31.2
LVQ40-T□	28.5	57	34.5	69	45.4	82.5	22	137	37.5	55.5	6	7	20	37.2	25	31.2
LVQ50-T□	42	84	48	96	75	127	25	180	50.2	78.2	10	7	20	50.8	38.5	45
LVQ60-T□	42	84	48	96	75	137	32	189	60	88	10	7	20	50.8	38.5	45

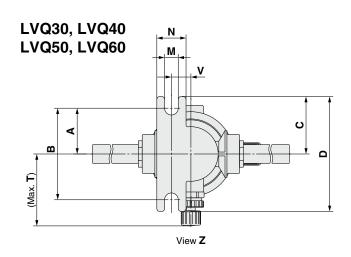

LVQ-T Series

Dimensions

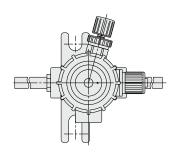

With flow rate adjustment, High back pressure with flow rate adjustment

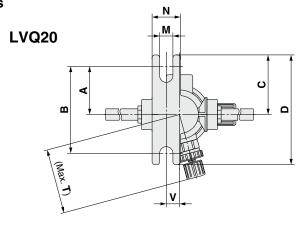

N.C. valve

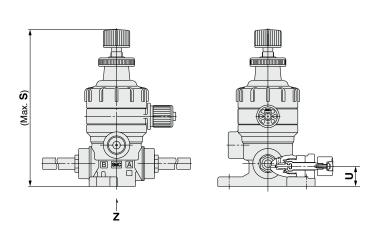

Dimensions	(mm)
Model	S
LVQ20-T□-1	83
LVQ30-T□-1	113.5
LVQ40-T□-1	119
LVQ50-T□-1	171.5
LVQ60-T□-1	182.5

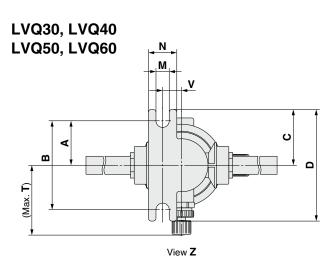


With by-pass, High back pressure with by-pass N.C. valve

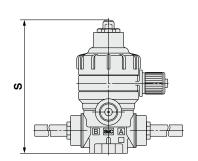







Dimensions									(mm)
Model	Α	В	С	D	M	N	Т	U	V
LVQ20-T□-2	25.5	46	31.5	58	7	15	34.3	10.6	7
LVQ30-T□-2	25.5	51	31.5	63	7	15	36.9	16.5	10
LVQ40-T□-2	25.5	51	31.5	63	7	15	37.9	22	10
LVQ50-T□-2	38	76	44	88	7	20	64	25	17
LVQ60-T□-2	38	76	44	88	7	20	66	32	17

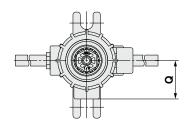
With flow rate adjustment & by-pass, High back pressure with flow rate adjustment & by-pass N.C. valve

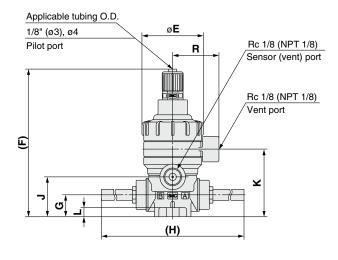


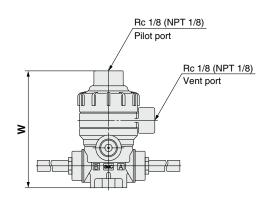
Dimensions										(mm)
Model	Α	В	С	D	М	N	S	Т	U	٧
LVQ20-T□-3	25.5	46	31.5	58	7	15	83	34.3	10.6	7
LVQ30-T□-3	25.5	51	31.5	63	7	15	113.5	36.9	16.5	10
LVQ40-T□-3	25.5	51	31.5	63	7	15	119	37.9	22	10
LVQ50-T□-3	38	76	44	88	7	20	171.5	64	25	17
LVQ60-T□-3	38	76	44	88	7	20	182.5	66	32	17

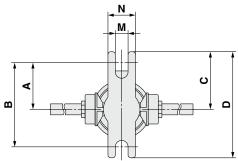
With indicator, High back pressure with indicator N.C. valve

Dimensions	(mm)
Model	S
LVQ20-T□-4	70.5
LVQ30-T□-4	88.5
LVQ40-T□-4	94
LVQ50-T□-4	134.5
LVQ60-T□-4	144

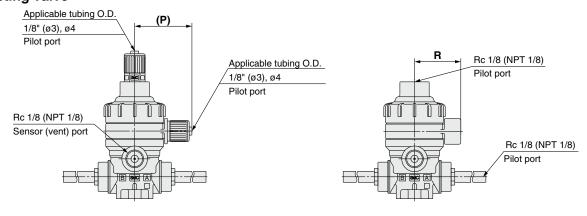


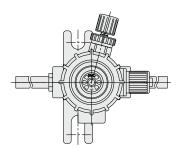


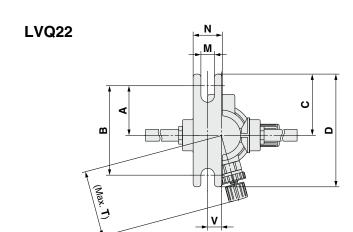

LVQ-T Series

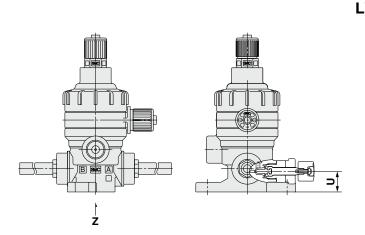

Dimensions

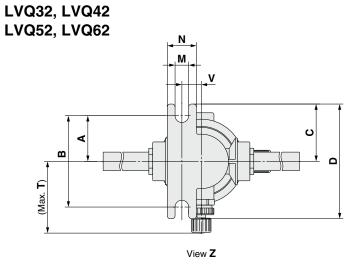
Basic N.O. valve



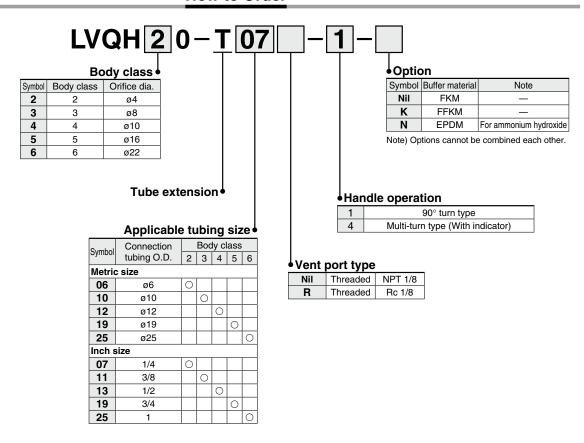



Double acting valve




LVQ□¹-T□ Dimensions (N.O. Valve, Double Acting Valve)											(mm)						
Model	Α	В	С	D	E	F	G	Н	J	K	L	M	N	Р	Q	R	W
LVQ2¹₂-T□	25.5	46	31.5	58	33.6	81	12	111.5	21.8	37	5	7	15	31.3	21	25.3	64
LVQ3 ¹ ₂ -T□	28.5	57	34.5	69	45.4	99	16.5	136	32	50	6	7	20	37.2	25	31.2	82
LVQ4 ¹ ₂ -T□	28.5	57	34.5	69	45.4	104	22	137	37.5	55.5	6	7	20	37.2	25	31.2	87.5
LVQ5½-T□	42	84	48	96	75	144.5	25	180	50.2	78.2	10	7	20	50.8	38.5	45	128
LVQ6 ¹ ₂ -T□	42	84	48	96	75	154.5	32	189	60	88	10	7	20	50.8	38.5	45	137.5

With by-pass Double acting valve


Dimensions									(mm)
Model	Α	В	С	D	M	N	T	U	٧
LVQ22-T□-2	25.5	46	31.5	58	7	15	34.3	10.6	7
LVQ32-T□-2	25.5	51	31.5	63	7	15	36.9	16.5	10
LVQ42-T□-2	25.5	51	31.5	63	7	15	37.9	22	10
LVQ52-T□-2	38	76	44	88	7	20	64	25	17
LVQ62-T□-2	38	76	44	88	7	20	64	32	17

Manually Operated **Tube Extension Type**

LVQH-T Series

How to Order

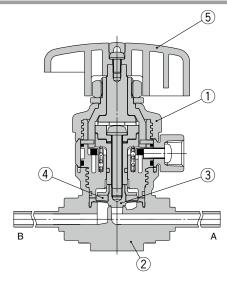
Variations

	Model	LVQH20-T	LVQH30-T	LVQH40-T	LVQH50-T	LVQH60-T
Tubin	Orifice diameter 9 O.D. Metric	ø4	ø8	ø10	ø16	ø22
		_	10	12	19	25
Туре	Symbol	1/4	3/8	1/2	3/4	1
90° turn type	В	0	0	0	0	0
Multi-turn type	B A	0	0	0	0	0

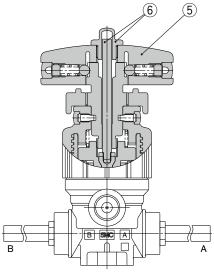
Symbol

90° turn type

Multi-turn type


Standard Specifications

Mod	del	LVQH20	LVQH30	LVQH40	LVQH50	LVQH60			
Tubing O.D.	Metric	6	10	12	19	25			
Tubing O.D.	Inch	1/4	3/8	1/2	3/4	1			
Orifice diamet	er	ø4	ø8	ø10	ø16	ø22			
Flow rate	Kv	0.3	1.1	1.6	4.2	6.8			
characteristics	Cv	0.35	1.3	1.9	5	8			
Withstand pre	ssure (MPa)			1					
Fluid pressure	e <a→b></a→b>	–98 k	Pa to 0.5 MP	a ^{Note)}	-98 kPa to 0).4 MPa Note)			
Back pressure	(MPa)	0.3 or less 0.2 or less							
Valve leakage	(cm³/min)	0 (With water pressure)							
Fluid tempera	ture (°C)	0 to 100							
Ambient temp	erature (°C)			0 to 60					
Woight (kg)	LVQH□0-1	0.12	0.25	0.28	1.04	1.05			
Weight (kg)	LVQH□0-4	0.11	0.18	0.19	0.62	0.73			


Note) This product cannot be used for vacuum retention. Also, connecting the vacuum to the B port may reduce the life of the product.

Construction

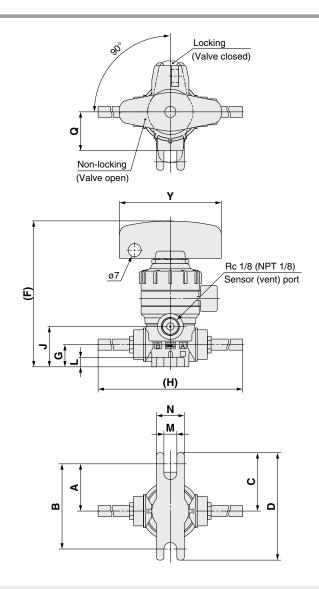
90° turn type

Multi-turn type (With indicator)

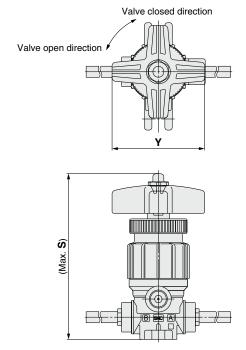
Component Parts

No.	Description	Material
1	Actuator	PVDF
2	Body	PFA
3	Diaphragm	PTFE
		FKM
4	Buffer	EPDM
		FFKM

No.	Description	Material
5	Handle	PVDF
6	Indicator/Cover	PP


LVQH-T Series

Dimensions

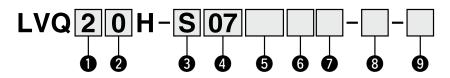

90° turn type

Dimensions							(mm)
Model	Α	В	С	D	F	G	Н
LVQH20-T□-1	25.5	46	31.5	58	79	12	111.5
LVQH30-T□-1	28.5	57	34.5	69	103	16.5	136
LVQH40-T□-1	28.5	57	34.5	69	108	22	137
LVQH50-T□-1	42	84	48	96	165	25	180
LVQH60-T□-1	42	84	48	96	175	32	189

Model	J	K	L	М	N	Q	Υ
LVQH20-T□-1	21.8	37	5	7	15	21	55
LVQH30-T□-1	32	50	6	7	20	25	80
LVQH40-T□-1	37.5	55.5	6	7	20	25	80
LVQH50-T□-1	50.2	78.2	10	7	20	38.5	110
LVQH60-T□-1	60	88	10	7	20	38.5	110

Multi-turn type (With indicator)

Dimensions		(mm)
Model	S	Υ
LVQH20-T□-4	93.6	50
LVQH30-T□-4	111.2	50
LVQH40-T□-4	116.7	50
LVQH50-T□-4	170.7	71
LVQH60-T□-4	180.2	71


Air Operated, 0.5 MPa Back Pressure Tolerant Insert Bushing, Integrated Fitting Type Hyper Fitting

LVQ H Series

The LQ2 fitting for the insert bushing, integrated fitting type LVQ/LVQH series high-purity chemical liquid valve is to be discontinued as of September 2025. Select the LQ1 fitting instead.

How to Order

1 Body class

Symbol	Body class	Orifice dia.
2	2	ø4
3	3	ø8
4	4	ø10
5	5	ø16
6	6	ø22

2 Valve type

0	N.C.
1	N.O.
2	Double acting

Note) For valve type combinations, refer to variations on the next page.

3 Fitting type

Symbol	Fitting type	Body class
٧	LQ1	2, 3, 4, 5, 6
S	LQ2	2, 3, 4, 5

Note) Insert bushing is used in common.

4 Applicable tubing size Note)

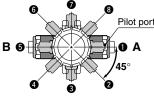
Symbol	Connection tubing		Вос	dy cl	ass	
size		2	3	4	5	6
Metric	size					
03	3 x 2	•				
04	4 x 3	•				
06	6 x 4	0	•			
08	8 x 6		•			
10	10 x 8		0	•		
12	12 x 10			0	•	
19	19 x 16				0	•
25	25 x 22					0
Inch s	size					
03	1/8" x 0.086"	•				
05	3/16" x 1/8"	•				
07	1/4" x 5/32"	0	•			
11	3/8" x 1/4"		0	•		
13	1/2" x 3/8"			0	•	
19	3/4" x 5/8"				0	•
25	1" x 7/8"					0

○Basic size ●With reducer

Note) Refer to page 150 for details of the applicable tubing sizes.

5 Port B (OUT) different dia. size

Symbol	Application
Nil	Ports A & B same size
	Different diameter tubings can be selected within the same body class.


6 Pilot port type

Nil	LQ1 integrated fitting	Connection tubing O.D. 1/8" (ø3)
М	LQ1 integrated fitting	Connection tubing O.D. ø4
R	Threaded	Rc1/8
N	Threaded	NPT1/8

7 Pilot port direction

Symbol	Direction
Nil	0
P2	2
P3	3
P4	4
P5	6
P6	6
P7	•
P8	8

Pilot port piping direction

 Specify the piping direction by part number when ordering the product. Do not change the pilot port direction. (Refer to Precautions on page 150.)

Air Operated, 0.5 MPa Back Pressure Tolerant Insert Bushing, Integrated Fitting Type LVQ H Series

8 Option 1

Nil	None						
1	With flow rate adjustment						
2	With by-pass						
3	With flow rate adjustment & by-pass						
4	With indicator						
24	With indicator & by-pass						

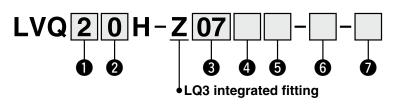
Note) Refer to variations in the table below for valve type and option 1 combinations. Options in the same table cannot be combined each other.

9 Option 2

Symbol	Applicable option						Buffer material	Note	
Symbol	Nil	1	2	3	4	24	buller material	Note	
Nil	0	0	0	0	0	0	FKM	_	
K	0	0	0	0	0	0	FFKM	_	
N	0	0	0	0	0	0	EPDM	For ammonium hydroxide	
Р	0	_	_	_	0	_	FKM	High flow type LVQ6 □ only	

Note) Options 2 in the same table cannot be combined each other.

Variations


variations		Model	LVQ20H	LVQ30H	LVQ40H	LVQ50H	LVQ60H
	Ori	fice diameter	ø4	ø8	ø10	ø16	ø22
	Tubing O.D.	Metric	6	10	12	19	25
Туре	Symbol Valve ty	Inch	1/4	3/8	1/2	3/4	1
Basic	∳PA ∳PB ∲PA	N.C.	0	0	0	0	0
N.C. N.O. Double	B A B A B A A A A A A A A A A A A A A A	N.O.	0	0	0	0	0
acting	N.C. N.O. Double acting	Double acting	0	0	0	0	0
With flow rate adjustment	∳PA B ★ A ⊗ N.C.	N.C.	0	0	0	0	0
With Double acting by-pass	∳PA ∳PA B A B A	N.C.	0	0	0	0	0
N.C.	B A B A A A A A A A A A A A A A A A A A	Double acting	0	0	0	0	0
With flow rate adjustment & by-pass	∲PA B #A N.C.	N.C.	0	0	0	0	0
With indicator	∳PA B A ⊗ N.C.	N.C.	0	0	0	0	0
With indicator & by-pass	∳PA B A N.C.	N.C.	0	0	0	0	0

Air Operated, 0.5 MPa Back Pressure Tolerant Flare, Integrated Fitting Type Hyper Fitting

LVQ H-Z Series

How to Order

Body class

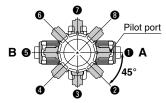
Symbol	Body class	Orifice dia.
2	2	ø4
3	3	ø8
4	4	ø10
5	5	ø16
6	6	ø22

2 Valve type

0	N.C.
1	N.O.
2	Double acting

Note) For valve type combinations, refer to variations on the next page.

4 Pilot port type


Nil	With LQ3 fitting	Connection tubing size 1/8" x 0.086" (3 x 2) Note)
M	With LQ3 fitting	Connection tubing size 4 x 3 Note)
R	Threaded	Rc1/8
N	Threaded	NPT1/8

Note) Refer to page 150 for details of the applicable tubing sizes.

5 Pilot port direction

_
O
2
8
4
6
6
0
8

Pilot port piping direction

 Specify the piping direction by part number when ordering the product. Do not change the pilot port direction. (Refer to Precautions on page 150.)

3 Applicable tubing size Note

Symbol	Connection tubing	,	Boo	dy cl	ass	
Symbol	size	2	3	4	5	6
Metric	size					
03	3 x 2	0				
04	4 x 3	0				
06	6 x 4	0				
08	8 x 6		0			
10	10 x 8		0			
12	12 x 10			0		
19	19 x 16				0	
25	25 x 22					0
Inch s	size					
07	1/4" x 5/32"	0				
11	3/8" x 1/4"		0			
13	1/2" x 3/8"			0		
19	3/4" x 5/8"				0	
25	1" x 7/8"					0

Note) Refer to page 150 for details of the applicable tubing sizes.

Air Operated, 0.5 MPa Back Pressure Tolerant Insert Bushing, Integrated Fitting Type LVQ H-Z Series

6 Option 1

Nil None 1 With flow rate adjustment 2 With by-pass 3 With flow rate adjustment & by-pass 4 With indicator		
With by-pass With flow rate adjustment & by-pass	Nil	None
3 With flow rate adjustment & by-pass	1	With flow rate adjustment
о глания наприментальной в приментальной в при	2	With by-pass
4 With indicator	3	With flow rate adjustment & by-pass
	4	With indicator
24 With indicator & by-pass	24	With indicator & by-pass

Note) Refer to variations in the table below for valve type and option 1 combinations. Options in the same table cannot be combined each other.

Option 2

Cumbal	F	Appli	cabl	е ор	tion		Buffer material	Note		
Symbol	Nil	1	2	3	4	24	buller material	Note		
Nil	0	0	0	0	0	0	FKM	_		
K	0	0	0	0	0	0	FFKM	_		
N	0	0	0	0	0	0	EPDM	For ammonium hydroxide		
Р	0	_	_	_	0	_	FKM	High flow type LVQ6 □ only		

Note) Options 2 in the same table cannot be combined each other.

Variations

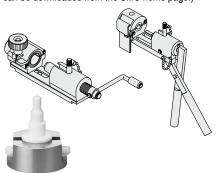
variations		Model	LVQ20H	LVQ30H	LVQ40H	LVQ50H	LVQ60H
	Ori	fice diameter	ø4	ø8	ø10	ø16	ø22
	Tubing O.D.	Metric	6	10	12	19	25
Туре	Symbol Valve ty		1/4	3/8	1/2	3/4	1
Basic	<u>∳P</u> A <u>∳P</u> B <u>∳P</u> A	N.C.	0	0	0	0	0
N.C. N.O. Double	B A B A B A A A A A A A A A A A A A A A	N.O.	0	0	0	0	0
acting acting	N.C. N.O. Double acting	Double acting	0	0	0	0	0
With flow rate adjustment	ÿPA B ★ A N.C.	N.C.	0	0	0	0	0
With Double acting by-pass	∳PA ∳PA B A B A	N.C.	0	0	0	0	0
N.C.	₹ ↑PB N.C. Double acting	Double acting	0	0	0	0	0
With flow rate adjustment & by-pass	∳PA B	N.C.	0	0	0	0	0
With indicator	∳PA B A ⊗ N.C.	N.C.	0	0	0	0	0
With indicator & by-pass	∳PA B A	N.C.	0	0	0	0	0

LVQ□□H Series

Symbol

inc	Basic/Wi licator/V ator & by	√ith	With flow rate adjustment	With i	by-pass/ indicator y-pass	With flow rate adjustment & by-pass
PA B A N.C.	†PB BHA N.O.	PA B → PB Double acting	†PA B ∦ A ⊗ N.C.	†PA B A N.C.	PA B A A PB Double acting	∳PA B ∦A N.C.

⚠ Specific Product Precautions


Be sure to read this before handling the products. Refer to page 501 for Safety Instructions and pages 149 and 150 for Air Operated Chemical Liquid Valve Precautions.

Piping

Caution

1. Connect tubing by special tools.

For information on tubing connection and special tools, please see the pamphlet "High Purity Fluoropolymer Fittings Hyper Fitting LQ1/2 Series Work Procedure Instructions" (M-E05-1) and "High Purity Fluoropolymer Fittings Hyper Fitting/Flare Type LQ3 Series Fitting Procedure" (M-E06-4). (The pamphlet can be downloaded from the SMC home page.)

Tighten the nut until it touches the end surface of the body, and then tighten it an additional 1/8 turn. If the nut won't turn any further, then it means a sufficient tightening has occurred. Refer to the proper tightening torques shown below.

Tightening Torque for Piping

Body	Torque (N·m)										
class	LQ1	LQ2	LQ3								
2	0.3 to 0.4	1.5 to 2.0	1.6 to 1.8								
3	0.8 to 1.0	3.0 to 3.5	3.2 to 3.5								
4	1.0 to 1.2	7.5 to 9.0	5.0 to 5.3								
5	2.5 to 3.0	11.0 to 13.0	10.0 to 10.5								
6	5.5 to 6.0	_	22.5 to 23.0								

Specifications

Mod	el	LVQ20H	LVQ30H	LVQ40H	LVQ50H	LVQ60H				
Tubing O.D.Note 1)	Metric	6	10	12	19	25				
Tubing O.D. Note 17	Inch	6 10 12 19 25 1/4 3/8 1/2 3/4 1 Ø4 Ø8 Ø10 Ø16 Ø22 0.3 1.1 1.6 4.2 6.8 (8.1) Note 1) 0.35 1.3 1.9 5 8 (9.5) Note 1) 1 -98 kPa to 0.5 MPa Note 3) 0.5 or less 0 (With water pressure) 0.5 to 0.8 1/8" (Ø3), Ø4, Rc 1/8, NPT 1/8 0 to 100 0 to 60								
Orifice diamete	er	ø4	ø8	ø10	ø16	ø22				
Flow rate	Kv	0.3	1.1	1.6	4.2	6.8 (8.1) Note 1)				
characteristics	Cv	0.35	1.3	1.9	5	8 (9.5) Note 1)				
Withstand pres	sure (MPa)	1								
Operating pressu	re <a→b flow=""></a→b>	–98 kPa to 0.5 MPa Note 3)								
Back pressure	(MPa)			0.5 or less						
Valve leakage	(cm³/min)		0 (Wit	th water pres	ssure)					
Pilot air pressu	ıre (MPa)			0.5 to 0.8						
Pilot port size	Note 2)		1/8" (ø3)	, ø4, Rc 1/8,	NPT 1/8					
Fluid temperat	ure (°C)	0 to 100								
Ambient tempe	erature (°C)	0 to 60								
Weight (kg)		0.08	0.17	0.22	0.70	0.81				

Note 1) (): High flow type

Note 2) Refer to page 150 for details of the applicable tubing sizes.

Note 3) This product cannot be used for vacuum retention. Also, connecting the vacuum to the B port may reduce the life of the product.

Dimensions

Dimensions are the same as those of the standard specifications.

Applicable Different Diameter Tubings with Reducer (LVQ□□H-^V_s)

Different diameter tubings can be selected (within the same body class) by using a nut and an insert bushing (reducer).

• With reducer

Body class	Connection tubing O.D.													
	Metric size									Ir	nch siz	ze		
	4	6	8	10	12	19	25	1/8	3/16	1/4	3/8	1/2	3/4	1
2	•	0	_	_	_	_	_	•	•	0	_	_	_	_
3	_	•	•	0	_	_	_	_	_	•	0	_	_	_
4	_	_	_	•	0	_	_	_	-	_	•	0	_	_
5	_	_	_	_	•	0	_	_	-	_	_	•	0	_
6	_	_	_	_	_	•	0	_	_	_	_	_	•	0

Note) Refer to page 99 for information on changing tubing sizes.

Material and Fluid Compatibility Check List for Air Operated Chemical Valves

Chemical	Compatibility
Acetone	O Note 1, 2)
Ammonium hydroxide	O Note 2)
Isobutyl alcohol	O Note 1, 2)
Isopropyl alcohol	O Note 1, 2)
Hydrochloric acid	0
Ozone (dry)	0
Hydrogen peroxide Concentration 5% or less, 50°C or less	0
Ethyl acetate	O Note 1, 2)
Butyl acetate	O Note 1, 2)
Nitric acid (except fuming nitric acid) Concentration 10% or less	O Note 2)
Deionized water (pure water)	0
Sodium hydroxide (caustic soda) Concentration 50% or less	0
Nitrogen gas	0
Super pure water	0
Toluene	O Note 1, 2)
Hydrofluoric acid	Note 2)
Sulfuric acid (except fuming sulfuric acid)	Note 2)
Phosphoric acid Concentration 80% or less	0

Table symbols

: Can be used
: Can be used in certain conditions

×: Cannot be used

The material and fluid compatibility check list provides reference values as a guide only.

Note 1) Since static electricity may be generated, implement suitable countermeasures.

Note 2) Use caution as permeation may occur. The permeated fluid may effect the parts of other materials.

- Compatibility is indicated for fluid temperatures of 100°C or less.
- The material and fluid compatibility check list provides reference values as a guide only, therefore we do not guarantee the application to our product.
- The data above is based on the information presented by the material manufacturers.
- SMC is not responsible for its accuracy and any damage happened because of this data.
- Use a fluid with a viscosity of 300 cp or less. Failure to do so may cause valve closing failure.

LVQ Series Air Operated Chemical Liquid Valve/Precautions 1

Be sure to read this before handling the products.

Design / Selection

⚠ Warning

1. Confirm the specifications.

Give careful consideration to operating conditions such as the application, fluid and environment, and use within the operating ranges specified in this catalog.

2. Fluids

Operate after confirming the compatibility of the product's component materials with fluids, using the check list on page 148. Contact SMC regarding fluids other than those in the check list. Operate within the indicated fluid temperature range.

3. Maintenance space

Ensure the necessary space for maintenance and inspections.

4. Fluid pressure range

Keep the supplied fluid pressure within the operating pressure range specified in this catalog.

5. Ambient environment

Install the product in an environment where there is no effect from radiant heat caused by heat sources, etc., and use within the ambient operating temperature range. After confirming the compatibility of the product's component materials with the ambient environment, operate so that fluid does not adhere to the product's exterior surfaces.

6. Liquid seals

When circulating fluid

Provide a relief valve in the system so that fluid does not get into the liquid seal circuit.

7. Countermeasures for static electricity

Since static electricity may be generated depending on the fluid being used, implement suitable countermeasures.

Mounting

\land Warning

1. If air leakage increases or equipment does not operate properly, stop operation.

After mounting, perform suitable function and leak tests to confirm that the mounting is correct.

2. Operation manual

Mount and operate the product after reading the manual carefully and understanding its contents. Also, keep the manual where it can be referred to as necessary.

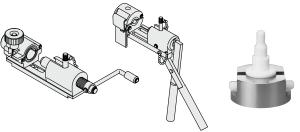
Piping

1. Preparation before piping

Before piping is connected, it should be thoroughly blown out with air (flushing) or washed to remove chips, cutting oil and other debris from inside the pipe.

Install piping so that it does not apply pulling, pressing, bending or other forces on the valve body.

2. Use the tightening torques shown below for the threaded pilot port.


Tightening Torque for Pilot Port

Pilot port	Torque (N·m)		
Rc, NPT 1/8	0.8 to 1.0		

3. Metal fittings

In the case of threaded pilot port, do not pipe the metal fittings which can cause damage to the thread part.

4. For information on tubing connection and special tools, please see the pamphlet "High Purity Fluoropolymer Fittings Hyper Fitting LQ1/2 Series Work Procedure Instructions" (M-E05-1) or "High Purity Fluoropolymer Fittings Hyper Fitting/Flare Type LQ3 Series Fitting Procedure" (M-E06-4). (The pamphlets can be downloaded from the SMC home page.)

Operating Air Supply

1. Use clean air.

Do not use compressed air which includes chemicals, synthetic oils containing organic solvents, salt, or corrosive gases, etc., as this may cause damage or malfunction.

LVQ Series

Air Operated Chemical Liquid Valve/Precautions 2

Be sure to read this before handling the products.

Use of Tubing

⚠ Caution

1. Refer to the applicable tubing sizes shown below for tubing to be used.

Applicable tubing sizes

	Applicable lubility sizes								
	Connection tubing size	O.D. (mm)		Internal thickness (mm)					
		Standard size	Tolerance	Standard size	Tolerance				
Metric sizes	ø3 x ø2	3.0	+0.2 -0.1 1.0	0.5	±0.06				
	ø4 x ø3	4.0							
	ø6 x ø4	6.0		1.0	±0.1				
	ø8 x ø6	8.0							
	ø10 x ø8	10.0		±0.1					
	ø12 x ø10	12.0							
	ø19 x ø16	19.0	+0.3	1.5	±0.15				
	ø25 x ø22	25.0	-0.1						
Inch sizes	1/8" x 0.086"	3.18	+0.2 -0.1 +0.3 -0.1	0.5	±0.1				
	3/16" x 1/8"	4.75		0.8					
	1/4" x 5/32"	6.35		1.2	±0.12				
	3/8" x 1/4"	9.53		- 1.6	±0.15				
	1/2" x 3/8"	12.7							
	3/4" x 5/8"	19.0							
	1" x 7/8"	25.4							

Operating Environment

Marning

- 1. Do not use in a location having an explosive atmosphere.
- 2. Do not use in locations where vibration or impact occurs.
- 3. Do not use in locations where radiated heat will be received from nearby heat sources.
- 4. Do not use in environments which exceed the ambient temperature specifications of the product.

Maintenance

⚠ Warning

- Maintenance should be performed in accordance with the procedures in the operation manual.
 - Incorrect handling can cause damage or malfunction of machinery and equipment, etc.
- 2. Before removing equipment or compressed air supply/exhaust devices, shut off the air and power supplies, and exhaust compressed air from the system.
 - Further, when restarting equipment after remounting or replacement, first confirm safety and then check the equipment for normal operation.
- 3. Perform work after removing residual chemicals and carefully replacing them with pure water or air, etc.
- **4.** Do not disassemble the product. Products which have been disassembled cannot be guaranteed. If disassembly is necessary, contact SMC.
- 5. In order to obtain optimum performance from valves, perform periodic inspections to confirm that there are no leaks from valves or fittings, etc.

Maintenance

⚠ Caution

Removal of drainage
 Flush drainage from filters regularly.

Precautions

Marning

- 1. Operate within the ranges of the maximum operating pressure and back pressure.
- 2. Do not change the pilot port direction. Products which have been disassembled cannot be guaranteed.

- 1. Please note that when the product is shipped from the factory, gases such as N₂ and air may leak from the valve at a rate of 1 cm³/min (when pressurized).
- 2. When operated at a very low flow rate, the product with flow rate adjustment may vibrate, etc. depending on the operating conditions. Therefore, operate only after careful examination of the flow rate, pressure and piping conditions.
- 3. Water hammering may occur depending on the fluid pressure conditions. In most cases, improvement is possible by adjusting the pilot pressure with a speed controller, etc., but the flow rate, pressure and piping conditions should be reviewed.
- 4. To adjust the flow rate with flow rate adjustment and/or by-pass, open gradually starting from the fully closed condition.

Opening is accomplished by turning the adjustment knob counterclockwise.

Additionally, do not apply any unreasonable force to the adjustment handle when nearing a fully opened or closed condition. This may result in deformation of the orifice sheet surface or damage to the threaded part of the adjustment handle.

The handle is in the fully closed condition when the product is shipped from the factory.

In addition, do not apply excessive force to the adjustment knob even when the lock nut is in a tightened state. Operate the adjustment knob when the lock nut is in a loosened state.

- 5. After long periods of nonuse, perform a test run before beginning regular operation.
- 6. Since the product is packaged in a clean room, use sufficient care in handling when opened.

LVQ Series Air Operated Chemical Liquid Valve/Precautions 3

Be sure to read this before handling the products.

Return of Product

⚠ Warning

If the product to be returned is contaminated or is possibly contaminated with substances that are harmful to humans, for safety reasons, please contact SMC beforehand and then employ a specialist cleaning company to decontaminate the product. After the decontamination prescribed above has been carried out, submit a Product Return Request Sheet or the Detoxification/Decontamination Certificate to SMC and await SMC's approval and further instructions before attempting to return the item. Please refer to the International Chemical Safety Cards (ICSC) for a list of harmful substances.

